(18.206.177.17) 您好!臺灣時間:2021/04/11 03:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳禹翰
研究生(外文):Yu-Han Chen
論文名稱:具尿素官能基之雙核狀固(膠)態高分子電解質結構鑑定與動力學研究
論文名稱(外文):Synthesis, Structure Characterization, Ionic Conductivity and Dynamic Properties of Double Core-branched Hybrid Electrolytes Based on Ureasils
指導教授:高憲明
指導教授(外文):Hsien-Ming Kao
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:207
中文關鍵詞:固態核磁共振鋰離子電池高分子電解質
外文關鍵詞:Lithium ion batteryPolymer electrolyteSolid-state NMR
相關次數:
  • 被引用被引用:1
  • 點閱點閱:135
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究對具有尿素官能基之雙核狀高分子電解質進行結構鑑定及動力學研究,利用三聚氯氰作為結構核心,以三嵌段共聚高分子 ED2000 作為連接,之後接上 ED2000 與異氰酸酯矽氧烷3-isocyanate propyltriethoxysilane (ICPTES) 反應之含尿素官能基前驅物,形成雙核狀結構的有機無機高分子電解質。
研究可分為兩大部分,第一部分以固態高分子電解質為研究主題,藉由摻雜不同濃度之鋰鹽 (LiClO4) ,探討其對於高分子電解質的性質影響及鋰離子與高分子鏈段的作用情形,利用熱重分析儀 (TGA) 探討熱穩定性,以微差掃描卡計 (DSC) 研究高分子鏈段結晶情形,傅立葉紅外線吸收光譜儀 (FTIR) 分析鋰鹽解離程度,交流阻抗分析儀 (AC-Impedance) 測量導電度、電化學穩定性及鋰離子遷移係數,以掃描式電子顯微鏡 (SEM) 分析表面型態及固態核磁共振光譜儀 (Solid State NMR) 進行動力學分析研究。
第二部分以膠態高分子電解質為研究主題,藉由合成之高分子電解質吸附含有不同鋰鹽之有機液態電解液,探討其電解液吸附程度,以交流阻抗分析儀 (AC-Impedance) 測量導電度、電化學穩定性及鋰離子遷移係數,並由固態核磁共振光譜儀 (Solid State NMR) 進行鋰離子擴散係數測試。
The development of polymer electrolytes with high ionic conductivity has received considerable attention because of their potential applications in many solid electrochemical devices such as high-energy density batteries, chemical sensors, and light-emitting devices. Organic-inorganic hybrid electrolytes doped with LiClO4 and based on tri-block copolymer poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) bis(2-aminopropyl ether) (H2N-PPG-PEG-PPG-NH2), 3-isocyanatepropyltriethoxysilane (ICPTES) and central core 2,4,6-trichloro-1,3,5-triazine (cyanuric chloride, cc) have been synthesized by sol-gel process to get a double core-branched structure.
The structural and dynamic properties of the materials were systematically investigated by a variety of techniques including thermo gravimetric analyzer (TGA), AC impedance, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscope (SEM), 13C cross-polarization magic-angle spinning (CPMAS) NMR measurement and with varying contact times, 1H-13C 2D WISE (wide-line separation) NMR measurements. A VTF (Vogel- Tamman-Fulcher)-like temperature dependence of ionic conductivity was observed for all the hybrid electrolytes studied, implying that the diffusion of charge carriers was assisted by the segmental motions of the polymer chains. The Li-ion mobility was determined from 7Li static NMR line width measurements and correlated with their ionic conductivities. A maximum ionic conductivity value of 6.22 × 10-5 S/cm was obtained at 30 ?C for the hybrid electrolyte with a [O]/[Li] ratio of 32.
Also present the swelling ratio of the electrolyte membrane is measured with different electrolyte solvents and found to be very high in comparison to other reported polymer electrolyte membrane. The membrane exhibits ionic conductivity value near to 10-2 S/cm. The high ionic conductivity of the electrolyte membrane is attributed to the higher percentage of swelling as it can retain sufficient amount of electrolyte solvent, thus creating channels for free movement of ions. The membrane also depicts higher electrochemical stability window versus Li/Li+, which is required for practical battery applications.
中文摘要 I
英文摘要 II
謝誌 IV
目錄 V
圖目錄 IX
表目錄 XIII
第壹章 緒論 1
1-1. 簡介 1
1-2. 文獻回顧 4
1-2-1. 二次電池與鋰高分子電池 4
1-2-2. 非水相電解質 (Nonaqueous Electrolytes) 9
1-2-3. 高分子電解質 (Polymer Electrolytes) 13
1-2-4. 固態高分子電解質 (Solid Polymer Electrolytes) 18
1-2-5. 膠態高分子電解質 24
1-2-6. 鋰離子鹽類 (Lithium Salts) 33
第貳章 研究規劃 43
2-1. 研究動機 43
2-1-1. 含三氮環之高分子 43
2-1-2. 異氰酸酯 (isocyanate) 與尿素 (urea) 44
2-1-3. 有機無機高分子 45
2-2. 研究方向 46
2-3. 研究目的與架構 47
第參章 實驗部分與原理 50
3-1. 實驗藥品 50
3-2. 儀器設備 52
3-3. 高分子電解質之製備 53
3-3-1. 固態高分子電解質製備 53
3-3-2. 膠態高分子電解質製備 56
3-4. 儀器分析原理 56
3-4-1. 熱重量分析儀 56
3-4-2. 微差掃描熱卡計 57
3-4-3. 傅立葉紅外線吸收光譜儀 59
3-4-4. 掃描式電子顯微鏡 59
3-4-5. 交流阻抗分析儀 60
3-4-6. 固態核磁共振 65
3-4-6-1. 原理簡介 65
3-4-6-2. 常用固態核磁共振技術 70
3-4-7. 線性掃描伏安法 81
3-4-8. 鋰離子遷移數目 82
第肆章 結果與討論 85
4-1. 第一部分 : 固態高分子電解質ED2000-2CC-4(ED-I) 85
4-1-1. 雙核狀固態高分子電解質 85
4-1-2. 熱重量分析 86
4-1-3. 微差掃瞄熱卡計之性質測試 89
4-1-4. 紅外線吸收光譜之鑑定分析 94
4-1-5. 掃描式電子顯微鏡之表面分析 101
4-1-6. 交流阻抗儀之離子導電度測試 103
4-1-7. 固態核磁共振光譜分析 112
4-1-7-1. 1H MAS NMR 113
4-1-7-2. 13C CP/MAS NMR 115
4-1-7-3. 1H/13C 2D WISE NMR 120
4-1-7-4. 7Li 譜寬分析 124
4-1-7-5. 7Li & 7Li-{1H} MAS NMR 132
4-1-7-6. 7Li 擴散係數之量測 136
4-1-8. 線性掃瞄伏安法 141
4-1-9. 鋰離子遷移數目測試 145
4-2. 第二部分 : 膠態高分子電解質ED2000-2CC-4(ED-I) 149
4-2-1. 雙核狀膠態高分子電解質 149
4-1-2. 電解液吸附之膨潤比量測 150
4-1-3. 交流阻抗儀之離子導電度測試 157
4-1-4. 7Li 擴散係數之量測 164
4-1-5. 線性掃瞄伏安法 170
4-1-6. 陽離子遷移數目測試 174
第伍章 結論 178
參考文獻 181
1.Tarascon, J. M.; Armand, M. Nature 2001, 414, 359.
2.Armand, M. Adv. Mater. 1990, 2, 127.
3.Armand, M. Solid State Ionics 1994, 69, 309.
4.Meyer, WH. Adv. Mater. 1998, 10, 439.
5.Noor, S. A. M.; Ahmad, A.; Talib, I. A.; Rahman, M. Y. A. Ionics 2010, 16, 161.
6.李文雄 科學發展, 2003, 362, 32.
7.Hajek, J. French Patent 1949, 8, 10.
8.“Battery Recall Update”, Adv. Batt. Technol. 1989, 25, 4.
9.Peled, E. J. Electrochem. Soc. Rev. 1979, 126, 2047.
10.Peled, E.; Golodnitsky, D.; Ardel, G.; Eshkenazy, V. Electrochim. Acta 1995, 40, 2197.
11.Yamaki, J. I.; Tobishima, S. I.; Hayashi, K.; Saito, K; Nemoto, Y.; Arakawa, M. J. Power Sources 1998, 74, 219.
12.Matsui, T.; Takeyama, K. Electrochim. Acta 1995, 40, 2165.
13.Osaka, T.; Homma, T.; Momma, T.; Yarimizu, H. J. Electroanal. Chem. 1997, 421, 153.
14.Yoshimatsu, I.; Hirai, T.; Yamaki, J. J. Electrochem. Soc. 1988, 135, 2422.
15.“Sony lithium ion battery performance summary”, JEC Batt. Newsletter 1994, 2, 31.
16.Matsuo, Y.; Fumita, K.; Fukutsuka, T.; Sugie, Y.; Koyama, H.; Inoue, K. J. Power Sources 2003, 119, 373
17.Blomgren, George E. J. Power Sources 1999, 81, 112.
18.Blomgren, George E. J. Power Sources 2003, 119, 326.
19.Ein-Eli, Y.; Thomas, S. R.; Koch, V. R. J. Electrochem. Soc. 1996 143, L195.
20.Ein-Eli, Y.; Thomas, S. R.; Koch, V. R. J. Electrochem. Soc. 1997. 144, 1159.
21.Xu, K. Chem. Rev. 2004, 104, 4303.
22.Goodenough, J. B.; Kim, Y. Chem. Mater. 2010, 22, 587.
23.Vogdanis, L.; Martens, B.; Uchtmann, H.; Hensel, F.; Heitz, W. Makromolekul. Chem. 1990, 191, 465.
24.Stassen, I.; Hambitzer, G. J. Power Sources 2002, 105, 145.
25.Zinck, L.; Borck, M.; Ripp, C.; Hambitzer, G. J. Appl. Electrochem. 2006, 36, 1291.
26.Garcia, B.; Lavallee, S.; Perron, G.; Michot, C.; Armand, M. Electrochim. Acta 2004, 49, 4583.
27.Kim, Y.; Saienga, J.; Martin, S. W. J. Phys. Chem. B 2006, 110, 16318.
28.Dudney, N. J. In Lithium Batteries; Nazri, G. A., Pistoia, G., Eds.; Kluwer Academic Publishers: Norwell, MA, 2004; p 623.
29.Machida, N.; Maeda, H.; Peng, H.; Shigematsu, T. J. Electrochem. Soc. 2002, 149, A688.
30.Nagata, K.; Nanno, T. J. Power Sources 2007, 174, 832.
31.Bates, J. B.; Dudney, N. J.; Neudecker, B.; Ueda, A.; Evans, C. K. Solid State Ionics 2000, 135, 33.
32.Fenton, D. E.; Parker, J. M.; Wright, P. V. Polymer, 1973, 14, 589.
33.Wright, P. V. Brit. Polym. J. 1975, 7, 319.
34.Armand, M. B.; Chabagno, J. M.; Duclot, M. Second International Meeting on Solid Electrolytes, Extended Abstract, St. Andrews, Scotland, Sep. 1978, 20.
35.Armand, M. B.; Chagbano, J. M.; Duclot, M. J. In Fast Ion Transport in Solid; Vashishta, P., Mundy, J. N., Shenoy, G. K., Eds.; Elsevier N Holland: New York, 1979; p131.
36.Nishimoto, A.; Watanabe, M.; Ikeda, Y.; Kojiya, S. Electrochim. Acta 1998, 43, 1177.
37.Berthier, C.; Gorecki, W.; Minier, M.; Armand, M. B.; Chabagno, J. M.; Rigaud, P. Solid State Ionics, 1983, 11, 91.
38.Song, J. Y.; Wang, Y. Y.; Wan, C. C.; J. Electrochem. Soc. 2000, 147, 3219.
39.Fauteux, D.; Massucco, A.; McLin, M.; Buren, M. V.; Shi, J. Electrochim. Acta 1995, 40, 2185.
40.Murata, K.; Izuchi, S.; Yoshihisa, Y. Electrochim. Acta 2000, 45, 1501.
41.Evans, J.; Vincent, C. A.; Bruce, P. G. Polymer 1987, 28, 2324.
42.Abraham, K. M.; Jiang, Z.; Carroll, B. Chem. Mater. 1997, 9, 1978.
43.Kim, Y. T.; Smotkin, E. S. Solid State Ionics 2002, 149, 29.
44.Andrieu, X.; Fauvarque, J. F.; Goux, A.; Hamaide, T.; M’hamdi, R.; Vicedo, T. Electrochimica Acta, 1995, 40, 2295.
45.Seki, S.; Tabata, S. I.; Matsui, S.; Watanabe, M. Electrochimica Acta, 2004, 50, 379.
46.Zhang, Z.; Sherlock, D.; West, R.; West, R. Macromolecules, 2003, 36, 9176.
47.Xi, J.; Miao, S.; Tang, X. Macromolecules, 2004, 37, 8592.
48.Zhang, J.; Huang, X.; Wei, H.; Fu, J.; Huang, Y.; Tang, X. J. Appl. Electrochem. 2010, 40, 1475.
49.Shibata, M.; Kobayashi, T.; Yosomiya, R.; Seki, M. European Polymer Journal, 2000, 36, 485.
50.Vallee, A.; Besner, S.; Prud’homme, J. Electrochimica Acta, 1992, 37, 1579.
51.Fujinami, T.; Tokimune, A.; Mehta, M. A. Chem. Mater. 1997, 9, 2236.
52.Ross-Murphy, S. B. “Formation, structure and properties of physical networks”, in Polymer Networks. –Principles of Their Formation, Structure and Properties, R. F. T. Stepto, Editor, Blackie Academic & Professional. London, UK, 1998, p288.
53.Abraham, K. M.; Alamgir, M. Solid State Ionics, 1994, 70, 20.
54.Sperling, L. H. Introduction to Physical Polymer Scienec, 2nd ed., John Wiley & Sons, New York, USA, 1993, p382.
55.The physical data were extracted and compiled from the following literature sources: (a) Jang, G. J.; Tomkins, R. P. T. Nonaqueous Electrolytes Handbook; Academic Press: New York, 1972; Vol. 1. (b) Dudley, J. T.; Wilkinson, D. P.; Thomas, G.; LeVae, R.; Woo, S.; Blom, H.; Horvath, C.; Juzkow, M. W.; Denis, B.; Juric, P.; Aghakian, P.; Dahn, J. R. J. Power Sources 1991, 35, 59. (c) Aldrich Handbook of Fine Chemicals and Laboratory Equipment; Aldrich Chemical Co.: 2003-2004. (d) Ue, M.; Ida, K.; Mori, S. J. Electrochem. Soc. 1994, 141, 2989. (e) Ding, M. S.; Xu, K.; Zhang, S.; Jow, T. R. J. Electrochem. Soc. 2001, 148, A299.
56.Feullade, G.; Perche, P. J. Appl. Electrochem. 1975, 5, 63.
57.Bohnke, O.; Rousselot, C.; Gillet, P. A.; Truche, C. J. Electrochem. Soc. 1992, 139, 1862.
58.Croce, F.; Brown, S. D.; Greenbaum, S. G.; Slane, S. M.; Salomon, M. Chem. Mater. 1993, 5, 1268.
59.Stallworth, P. E.; Li, J.; Greenbaum, S. G.; Croce, F.; Slane, S. Solid State Ionics, 1994, 73, 119.
60.Stallworth, P. E.; Greenbaum, S. G.; Croce, F.; Slane, S.; Salomon, M. Electrochimica Acta, 1995, 40, 2137.
61.Chintapalli, S.; Frech, R. Solid State Ionics, 1996, 86, 341.
62.Borghini, M. C.; Mastragostino, M.; Zanelli, A. Electrochimica Acta. 1996, 41, 2369.
63.Watanabe, M.; Kanba, M.; Matsuda, H.; Tsunemi, K.; Mizoguchi, K.; Tsuchida, E.; Shinohara, I. Chem. Rapid Commun. 1981, 2, 741.
64.Yang, C. R.; Perng, J. T.; Wang, Y. Y.; Wan, C. C. J. Power Sources, 1996, 62, 89.
65.Alamgir, M.; Abraham, K. M. “Lithium Batteries – New Materials, Developments and Perspectives”, in G. Pistoia ( Ed. ) Elsevier, 1994, p114, Chap3.
66.Jayathilaka, P.A.R.D.; Dissanayake, M.A.K.L.; Albinsson, I.; Mellander, B.-E. Solid State Ionics, 2003, 156, 179.
67.Quartarone, E.; Tomasi, C.; Mustarelli, P.; Appetecchi, G. B.; Croce, F. Electrochimica Acta, 1998, 43, 1435.
68.Liu, Y.; Lee, J.Y.; Hong, L. Solid State Ionics, 2002, 150, 317.
69.Çelik, S. Ü.; Bozkurt, A. Solid State Ionics 2010, 181, 987.
70.Patel, M.; Chandrappa, K. G.; Bhattacharyya, A. J. Solid State Ionics 2010, 181, 844.
71.Jiang, Z.; Carroll, B.; Abraham, K. M. Electrochimica Acta, 1997, 42, 2667.
72.Gozdz, A. S.; Tarascon, J. M.; Schmutz, C. N.; Warren, P. C.; Gebizlioglu, O. S.; Shokoohi, F. Ext. Abstr.-ECS Fall Meeting, Miami, Florida, October 9-14, 94/2, 117, 1994.
73.Boudin, F.; Andrieu, X.; Jehoulet, C.; Olsen, I. I. J. Power Sources, 1999, 81, 804.
74.Murata, K.; Izuchi, S.; Yoshihisa, Y. Electrochimica Acta, 2000, 45, 1501.
75.Tarascon, J. M.; Guyomard, D. Solid State Ionics 1994, 69, 293.
76.Aurbach, D.; Zaban, A.; Schecheter, A.; Ein-Eli, Y.; Zinigrad, E.; Markovsky, B. J. Electrochem. Soc. 1995, 142, 2873.
77.Newman, G. H.; Francis, R. W.; Gaines, L. H.; Rao, B. M. J. Electrochem. Soc. 1980, 127, 2025.
78.Yoshimatsu, I.; Hirai, T.; Yamaki, J. J. Electrochem. Soc. 1988, 135, 2422.
79.Abraham, K. M.; Goldman, J. L.; Natwig, D. L. J. Electrochem. Soc. 1982, 129, 2404.
80.Takata, K.; Morita, M.; Matsuda, Y. J. Electrochem. Soc. 1985, 132, 126.
81.Ue, M. J. Electrochem. Soc. 1995, 142, 2577.
82.Croce, F.; D’Aprano, A.; Nanjundiah, C.; Koch, V. R.; Walker, C.; Salomon, M. J. Electrochem. Soc. 1996, 143, 154.
83.Naoi, K.; Mori, M.; Naruoka, Y.; Lamanna, W. M.; Atanasoski, R. J. Electrochem. Soc. 1999, 146, 462.
84.Foropoulos, J.; DesMarteau, D. D. Inorg. Chem. 1984, 23, 3720.
85.Armand, M.; Gorecki, W.; Andreani, R. Proceedings of the 2nd International Meeting on Polymer Electrolytes; Scrosati, B., Ed.; Elsevier: London, 1989; p 91.
86.Webber, A. J. Electrochem. Soc. 1991, 138, 2586.
87.Dominey, L. A.; Koch, V. R.; Blakley, T. Electrochim. Acta 1992, 37, 1551.
88.Yang, H.; Kwon, K.; Devine, T. M.; Evans, J. W. J. Electrochem. Soc. 2000, 147, 4399.
89.Kawamura, T.; Kimura, A.; Egashira, M.; Okada, S.; Yamaki, J. J. Power Sources 2001, 104, 260.
90.Sloop, S. E.; Pugh, J. K.; Wang, S.; Kerr, J. B.; Kinoshita, K. Electrochem. Solid-State Lett. 2001, 4, A42.
91.Krause, L. J.; Lamanna, W.; Summerfield, J.; Engle, M.; Korba, G.; Loch, R.; Atanasoski, R. J. Power Sources 1997, 68, 320.
92.Ozawa, K. Solid State Ionics 1994, 69, 212.
93.Dominey, L. A.; Koch, V. R.; Blakley, T. Electrochim. Acta 1992, 37, 1551.
94.Yang, H.; Kwon, K.; Devine, T. M.; Evans, J. W. J. Electrochem. Soc. 2000, 147, 4399.
95.Sasaki, Y.; Handa, M.; Kurashima, K.; Tonuma, T.; Usami, K. J. Electrochem. Soc. 2001, 148, A999.
96.Xu, W.; Angell, C. A. Solid State Ionics 2002, 147, 295.
97.Xu, W.; Angell, C. A. Electrochem. Solid-State Lett. 2000, 3, 366.
98.Itoh, T.; Ikeda, M.; Hirata, N.; Moriya, Y.; Kubo, M.; Yamamoto, O. J. Power Sources, 1999, 81, 824.
99.Desai, N. P.; Hubbell, J. A. Journal of Biomedical Materials Research, 1991, 25, 829.
100.Dean, M. T.; Mary, A. B. M.; James, D. K.; William, R. B. Macromolecules, 2006, 39, 120.
101.Kaskhedikar, N.; Burjanadze, M.; Karatas, Y.; Wiemhofer, H. D. Solid State Ionics, 2006, 177, 3129.
102.de Zea Bermudez, V.; Carlos, L. D.; Alca’cer, L. Chem. Mater. 1999, 11, 569.
103.Silva, M. M.; Nunes, S. C.; Barbosa, P. C.; Evans, A.; de Zea Bermudez, V.; Smith, M. J.; Ostrovskii, D. Electrochim. Acta 2006, 52, 1542.
104.Rabek, J. F. “Experimental Methods in Polymer Chemistry”, New York, 1980.
105.Besenhard, J. O. In Handbook of Battery Materials; Wiley-VCH: Weinheim, Germany. 1999.
106.Andrew, E. R.; Bradbury, A.; eades, R. G. Nature. 1058, 182, 1659.
107.Lowe, I. J. Phys. Rev. Lett. 1959, 2, 285.
108.Schmidt-Rohr, K.; Clauss, J.; Spiess, H. W. Macromolecules, 1992, 25, 3273.
109.余慈顏, 國立台灣大學碩士論文, 1999.
110.高憲明, NMR化工技術.
111.Chung, S. H.; Jeffrey, K. R.; Stevens, J. R. J. Chem. Phys. 1991, 94, 1803.
112.Abragam, A.; The Principles of Nuclear Magnetism, 1961.
113.Olsen, I. I.; Koksbang, R.; Skou, E. Electrochim. Acta 1995, 40, 1701.
114.Digar, M.; Hung, S. L.; Wang, H. L.; Wen, T. C.; Gopalan, A. Polymer, 2002, 43, 681.
115.Jannasch, P. Electrochim. Acta. 2001, 46, 1641.
116.Murata, K.; Izuchi, S.; Yoshihisa, Y. Electrochim. Acta. 2000, 45, 1501.
117.Jannasch, P. Polymer. 2001, 42, 8629.
118.Jeon, J. D.; Kwak, S. Y. Macromolecules, 2006, 39, 8027.
119.Bathista, A. L. B. S.; deAzevedo, E. R.; Bloise, A. C.; Dahmouche, K.; Judeinstein, P.; Bonagamba, T. J. Chem. Mater. 2007, 19, 1780.
120.Mattia, J.; Painter, P. Macromolecules, 2007, 40, 1546.
121.Liang, W. J.; Kuo, C. L.; Lin, C. L.; Kuo, P. L. J. Polym. Sci. Pol. Chem. 2002, 40, 1226.
122.Gray, F. M. Polymer electrolytes 1997, The Royal Society of Chemistry, UK, Chap. 1.
123.Watanabe, M.; Sanui, K.; Ogata, N.; Kobayashi, T.; Ohtaki, Z. J. Appyl. Phys. 1985, 57, 123.
124.Chen, W. B.; Feng, H. Q.; He, D. O.; Ye, C. O. J. Appyl. Polym. Sci. 1998, 67, 139.
125.De Paoli, M. A.; Zanelli, A.; Mastragostino, M.; Rocco, A. M. J. Electroana. Chem. 1997, 435, 217.
126.Hu, S.; Fang, S. Electrochim. Acta. 1999, 44, 2721.
127.Fulcher, G. S. J. Am. Ceram. Soc. 1925, 8, 339.
128.Vogel, H. Phys. Z. 1921, 22, 645.
129.Chintapalli, S.; Frech, R. Solid State Ionics. 1996, 86, 341.
130.Albinsson, I.; Mellander, B.-E.; Stevens, J.R. J. Chem. Phys. 1992, 96, 681.
131.Chen-Yang, Y. W.; Hwang, J. J.; Chang, F. H. Macromolecules 1997, 30, 3825.
132.Qian, X.; Gu, N.; Cheng, Z.; Yang, X.; Wang, E.; Dong, S. Mater. Chem. Phys .2002, 74, 98.
133.Adam, G.; Gibbs, J. H. J. Chem. Phys. 1965, 43, 139.
134.Bruce, P.G.; Vincent, C. A. J. Chem. Soc., Faraday Trans. 1993, 122, 131.
135.Frech, R.; Manning, J.; Teeters, D.; Black, B. E. Solid State Ionics 1988, 28, 954.
136.Schmidt-Rohr K.; Clause J.; Spiess H. W. Macromolecules, 1992, 25, 3273.
137.Chu, P. P.; Jen, H. P.; Lo, F. R.; Lang, C. L. Macromolecules, 1999, 32, 4738.
138.Murata, K.; Izuchi, S.; Yoshihisa, Y. Electrochim. Acta. 2000, 45, 1501.
139.Stejskal, E. O.; Tanner, J. E. J. Chem. Phys.1965, 42, 288.
140.Stilbs, P. Prog. Nucl. Magn. Reson. Spectrosc. 1987, 23, 1.
141.Johansson, A.; Gogoll, A.; Tegenfeldt, J. Polymer 1996, 37, 1387.
142.Gorecki, W.; Jeannin, M.; Belorizky, E.; Roux, C.; Armand, M. J. Phys.: Condens. Matter 1995, 7, 6823.
143.Chen, W. B.; Feng, H. Q.; He, D. O.; Ye, J. C. H. Appl. Polym. Sci. 1998, 67, 139.
144.Subramania, A.; Sundaram, N. T. K.; Priya, A. R.; Gangadharan, R.; Vasudevan, T. J. Appl. Polym. Sci. 2005, 98, 1891.
145.Sivakumar, M.; Subadevi, R.; Rajendran, S.; Wu, H. C.; Wu, N. L. Eur. Polym. J. 2007, 43, 4466.
146.Li, W.; Yang, M.; Yuan, M.; Tang, Z.; Zhang, J. Q. Appl. Polym. Sci. 2007, 106, 3084.
147.Huang, M. M.; Jiang, Y.; Sasisanker, P.; Driver, G. W.; Weingartner, H. J. Chem. Eng. Data 2011, 56, 1494.
148.Valoen, L. O.; Reimers, J. N. Jurnal of The Electrochemical Society 2005, 152, A882.
149.Jannasch, P. Electrochim. Acta 2001, 46, 1641.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 17.張豐吉、杜明宏(1992)台灣產重要樹種化學性質之研究(V)十六種闊葉樹之纖維形態及化學性質。中華林學季刊,24(3):73。
2. 17.張豐吉、杜明宏(1992)台灣產重要樹種化學性質之研究(V)十六種闊葉樹之纖維形態及化學性質。中華林學季刊,24(3):73。
3. 17.張豐吉、杜明宏(1992)台灣產重要樹種化學性質之研究(V)十六種闊葉樹之纖維形態及化學性質。中華林學季刊,24(3):73。
4. 17.張豐吉、杜明宏(1992)台灣產重要樹種化學性質之研究(V)十六種闊葉樹之纖維形態及化學性質。中華林學季刊,24(3):73。
5. 15.周明儀(2007)從文化觀點看苦楝之今昔。明新通識學報第3期,pp. 111-121。
6. 15.周明儀(2007)從文化觀點看苦楝之今昔。明新通識學報第3期,pp. 111-121。
7. 15.周明儀(2007)從文化觀點看苦楝之今昔。明新通識學報第3期,pp. 111-121。
8. 15.周明儀(2007)從文化觀點看苦楝之今昔。明新通識學報第3期,pp. 111-121。
9. 14.林建宗、賴婉綺、蕭文鳳、王升陽(2007)柳杉心材精油對衣魚之忌避與致死活性之研究。中華林學季刊 40(2):251-260。
10. 14.林建宗、賴婉綺、蕭文鳳、王升陽(2007)柳杉心材精油對衣魚之忌避與致死活性之研究。中華林學季刊 40(2):251-260。
11. 14.林建宗、賴婉綺、蕭文鳳、王升陽(2007)柳杉心材精油對衣魚之忌避與致死活性之研究。中華林學季刊 40(2):251-260。
12. 14.林建宗、賴婉綺、蕭文鳳、王升陽(2007)柳杉心材精油對衣魚之忌避與致死活性之研究。中華林學季刊 40(2):251-260。
13. 11.林天書、王振瀾(1988)苦楝抽出物防除白蟻效能之研究。林業試驗所研究報告季刊,3(4): 255-261。
14. 11.林天書、王振瀾(1988)苦楝抽出物防除白蟻效能之研究。林業試驗所研究報告季刊,3(4): 255-261。
15. 11.林天書、王振瀾(1988)苦楝抽出物防除白蟻效能之研究。林業試驗所研究報告季刊,3(4): 255-261。
 
系統版面圖檔 系統版面圖檔