(3.215.183.251) 您好!臺灣時間:2021/04/23 14:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳弘政
研究生(外文):Hung-Cheng Chen
論文名稱:合成具有抗病毒潛力的香豆素與腺嘌呤、腺苷、肌苷之胺鍵標靶共軛化合物
論文名稱(外文):Synthesis of Coumarin Conjugated Adenine, Adenosine, and Inosine with Amine Linkers as Potential Antiviral Hits
指導教授:胡紀如
指導教授(外文):Jih Ru Hwu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:72
中文關鍵詞:肌苷腺苷腺嘌呤香豆素抗病毒
外文關鍵詞:AdenineAdenosineInosineCoumarinAntiviral
相關次數:
  • 被引用被引用:0
  • 點閱點閱:94
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
全球大約有一億七千萬人口受到C型肝炎病毒(Hepatitis C Virus, HCV)的感染,目前對於C型肝炎的治療並無疫苗和標靶藥物,所以新藥物的開發是當務之急。我們利用修飾腺嘌呤、腺苷、肌苷的結構,期望可以找出有效的抗C型肝炎病毒的化合物。
我們成功地合成將腺嘌呤、腺苷、肌苷與香豆素以胺鍵共軛在一起的化合物,其合成方法為利用腺嘌呤、腺苷與香豆素於二甲基甲醯胺溶劑下加熱至80 °C反應36小時,而肌苷與香豆素於二甲基甲醯胺溶劑下並加入氫化鈉於常溫下反應30分鍾,並且藉由核磁共振光譜圖、高解析質譜儀分析討論獲得的目標產物。將以–NHCH2–鍵結同一系列的化合物8、10、12的1H NMR光譜放在一起,並觀察其–NHCH2–鍵結的化學位移,我們可以發現其化學位移分別出現在5.492 ppm、5.407 ppm、5.429 ppm,此時我們可以更確定合成的化合物8、10、12是以–NHCH2–鍵結的同一系列化合物。
利用分子模擬我們發現胺鍵結上N–H的氫原子與香豆素環上C=O的氧原子之間,其構形在最穩定能量態下沒有觀察到分子內氫鍵形成,且可觀察到腺苷的嘌呤環與香豆素此兩平面分子會藉由以–NHCH2–鍵結旋轉,並且以96.51°的角度扭轉成非共平面結構。此結果可直接與活性數據討論,並有利於我們了解合成的化合物對於抑制C型肝炎病毒結構與活性的關係。
Approximately one hundred and seventy million people worldwide were affected by hepatitis C virus infection. The search for effective vaccine is not yet available and therapeutic options are still limited, so the development of the drug is a priority. In this project we aim to synthesize some potential anti-hepatitis C virus agents which can be obtained by modifying the structure of adenine, adenosine, and inosine.
We have successfully obtained coumarin conjugated adenine, adenosine, and inosine hybrids with amine linker. To a solution containing of adenine or adenosine in N,N-dimethylformamide was added coumarin. The reaction mixture was heated to 80 °C and stirred for 36 hours. Treatment of inosin in N,N-dimethylformamide was added coumarin in the presence of sodium hydride. Then the reaction mixture was stirred at room temperature for 30 minutes to furnish the desired product. The compounds were further confirmed by using the spectral data of nuclear magnetic resonance and mass spectrometry. We have synthesized a series of compound 8, 10, and 12 which has –NHCH2– bonding. We analyzed compound 8, 10, and 12 by using of 1H NMR spectroscopy to confirm –NHCH2– bonding. We observed chemical shift at 5.492 ppm, 5.407 ppm, and 5.429 ppm for the compound 8, 10, and 12 respectively. So we conclude that compound 8, 10, and 12 are the same series agents.
The molecular modeling studies indicate that the conformation having thermodynamically most stable form did not contain intramolecular hydrogen bonding between the NH proton in purine and the carbonyl group in coumarin. The molecule could be free rotation by –NHCH2– linker. The angle between purine and coumarin plane is 96.51°. The results of this study may help us to understand the structure–activity relationship of the compounds for the inhibition of hepatitis C virus.
目 錄
中文摘要 ............................................................................................................. i
英文摘要 ........................................................................................................... iii
謝誌 .................................................................................................................... v
目錄 ................................................................................................................... vi
圖目錄 ................................................................................................................ x
表目錄 .............................................................................................................. xii
一、 緒 論 ........................................................................................................ 1
二、 結 果 ........................................................................................................ 8
2-1製備已知2-benzyloxy-5-bromobenzaldehyde (3) ……...................... 8
2-2製備已知methyl 3-(2-benzyloxy-5-bromophenyl)-3-hydroxy-2-
methylenepropanoate (5) ................................................................... 8
2-3製備已知6-bromo-3-(chloromethyl)-coumarin (6) …....................... 9
2-4合成conjugated adenine –coumarin化合物 (8) ………………...... 10
2-5合成conjugated adenosine–coumarin化合物 (10) …...................... 10
2-6合成conjugated 2''-deoxyadenosine –coumarin化合物 (12) ........... 11
2-7合成conjugated inosine –coumarin化合物 (14) ............................. 12
2-8合成conjugated 2''-deoxyinosine–coumarin化合物 (16) ................ 13
2-9合成conjugated hypoxanthine–coumarin化合物 (17) ……............ 13
2-10利用分子模擬預測化合物8、10、12及14之構形........................ 14
三、 討 論 ...................................................................................................... 19
3-1 利用1H NMR光譜分析conjugated adenosine–coumarin
化合物 10 ..................................................................................... 19
3-2 利用1H NMR光譜分析化合物8、10及12 ................................... 20
3-3 利用1H NMR光譜分析conjugated inosine–coumari
化合物 14 ..................................................................................... 22
3-4 探討肌苷在鹼性條件下N-alkylation的反應性 ……………..... 25
3-5 藉由1H NMR光譜研究化合物8、10及12是否有分子內
氫鍵 ................................................................................................ 26
3-6 藉由FT-IR研究化合物8、10及12是否有分子內氫鍵 .......... 28
3-7 利用分子模擬討論化合物8、10及12是否具有分子內氫鍵 .... 30
四、 結 論 ...................................................................................................... 32
五、 實 驗 部 分 .......................................................................................... 34
N6-[(6''-Bromocoumarin-3''-yl)methyl]adenine (8) ................................... 35
N6-[(6''-Bromocoumarin-3''-yl)methyl]adenosine (10) .............................. 36
N6-[(6''-Bromocoumarin-3''-yl)methyl]-2''-deoxyadenosine (12) ............... 36
N1-[(6''-Bromocoumarin-3''-yl)methyl]inosine (14) .................................. 37
N1-[(6''-Bromocoumarin-3''-yl)methyl]-2’-deoxyinosine (16) ................. 38
N1-[(6''-Bromocoumarin-3''-yl)methyl]hypoxanthine (17) ....................... 38
六、 參 考 文 獻 .......................................................................................... 40
七、 光 譜 ...................................................................................................... 47
N6-[(6''-Bromocoumarin-3''-yl)methyl]adenine (8) 1H 核磁共振
光譜圖 ............................................................................................ 48
N6-[(6''-Bromocoumarin-3''-yl)methyl]adenine (8) 13C 核磁共振
光譜圖 ............................................................................................ 48
N6-[(6''-Bromocoumarin-3''-yl)methyl]adenine (8) 紅外線光譜圖 ....... 49
N6-[(6''-Bromocoumarin-3''-yl)methyl]adenosine (10) 1H 核磁共振
光譜圖 ……………………………….…………………………... 49
N6-[(6''-Bromocoumarin-3''-yl)methyl]adenosine (10) 13C 核磁共振
光譜圖 …………………………….……………………………... 50
N6-[(6''-Bromocoumarin-3''-yl)methyl]adenosine (10) 紅外線光譜圖 .. 50
N6-[(6''-Bromocoumarin-3''-yl)methyl]-2''-deoxyadenosine (12) 1H 核磁
共振光譜圖 .................................................................................... 51
N6-[(6''-Bromocoumarin-3''-yl)methyl]-2''-deoxyadenosine (12) 13C 核磁
共振光譜圖 .................................................................................... 51
N6-[(6''-Bromocoumarin-3''-yl)methyl]-2''-deoxyadenosine (12) 紅外線
光譜圖 ............................................................................................ 52
N1-[(6''-Bromocoumarin-3''-yl)methyl]inosine (14) 1H 核磁共振
光譜圖 ............................................................................................ 52
N1-[(6''-Bromocoumarin-3''-yl)methyl]inosine (14) 13C 核磁共振
光譜圖 .................................................................................................. 53
N1-[(6''-Bromocoumarin-3''-yl)methyl]inosine (14) 紅外線光譜圖 .... 53
N1-[(6''-Bromocoumarin-3''-yl)methyl]-2’-deoxyinosine (16) 1H 核磁共振光譜圖 …………………………………………………………….. 54
N1-[(6''-Bromocoumarin-3''-yl)methyl]-2’-deoxyinosine (16) 13C 核磁共振光譜圖 …………………………………………………………….. 54
N1-[(6''-Bromocoumarin-3''-yl)methyl]-2’-deoxyinosine (16) 紅外線
光譜圖 ……………………………………………………………….. 55
N1-[(6''-Bromocoumarin-3''-yl)methyl]hypoxanthine (17) 1H 核磁共振
光譜圖 .................................................................................................. 55
N1-[(6''-Bromocoumarin-3''-yl)methyl]hypoxanthine (17) 13C 核磁共振
光譜圖 .................................................................................................. 56
N1-[(6''-Bromocoumarin-3''-yl)methyl]hypoxanthine (17) 紅外線
光譜圖 .................................................................................................. 56
1.Lauer, G. M.; Walker, B. D. Hepatitis C virus infection. N. Engl. J. Med. 2001, 345, 41–52.
2.Roingeard, P.; Hourioux, C. Hepatitis C virus core protein, lipid droplets and steatosis. J. Viral Hepat. 2008, 15, 157–164.
3.De Francesco, R.; Tomei, L.; Altamura, S.; Summa, V.; Migliaccio, G. Approaching a new era for hepatitis C virus therapy: inhibitors of the NS3-4A serine protease and the NS5B RNA-dependent RNA polymerase. Antiviral Res. 2003, 58, 1–16.
4. Pawlotsky, J. M.; Gish, R. G. Future therapies for hepatitis C. Antivir. Ther. 2006, 11, 397–408.
5. Choo, Q. L.; Kuo, G.; Weiner, A. J.; Overby, L. R.; Bradley, D. W.; Houghton, M. Isolation of a cDNA clone derived from a bloodborne non-A, non-B viral hepatitis genome. Science 1989, 244, 359–362.
6. Hoofnagle, J. H. Course and outcome of hepatitis C. Hepatology 2002, 36, S21–S29.
7. Simmonds, P. Genetic diversity and evolution of hepatitis C virus – 15 years on. J. Gen. Virol. 2004, 85, 3173–3188.
8. Simmonds, P.; Bukh, J.; Combet, C.; Deléage, G.; Enomoto, N.; Feinstone, S,; Halfon, P,; Inchauspé, G.; Kuiken, C.; Maertens, G.; Mizokami, M.; Murphy, D. G.; Okamoto, H.; Pawlotsky, J. M.; Penin, F.; Sablon, E.; Shin-I, T.; Stuyver, L. J.; Thiel, H. J.; Viazov, S.; Weiner, A. J.; Widell, A. Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes. Hepatology 2005, 42, 962–973.
9. Di Bisceglie, A. M.; Hoofnagle, J. H. Optimal therapy of hepatitis C. Hepatology 2002, 36, S121–S127.
10. Zein, N. N. Etanercept as an adjuvant to interferon and ribavirin in treatment-naive patients with chronic hepatitis C virus infection: a phase 2 randomized, double-blind, placebo-controlled study. J. Hepatol. 2005, 42, 315–322.
11. Bretner, M. Existing and future therapeutic options for hepatitis C virus infection. Acta Biochim. Pol. 2005, 52, 57–70.
12. Manns, M. P.; Foster, G. R.; Rockstroh, J. K.; Zeuzem, S.; Zoulim, F.; Houghton, M. The way forward in HCV treatment – finding the right path. Nat. Rev. Drug Disc. 2007, 6, 991–1000.
13. Hirashima, S.; Suzuki, T.; Ishida, T.; Noji, S.; Yata, S.; Ando, I.; Komatsu, M.; Ikeda, S.; Hashimoto, H. Benzimidazole derivatives bearing substituted biphenyls as hepatitis C virus NS5B RNA-dependent RNA polymerase inhibitors: structure–activity relationship studies and identification of a potent and highly selective inhibitor JTK-109. J. Med. Chem. 2006, 49, 4721–4736.
14. Hwang, J. S.; Kregler, O.; Schilf, R.; Bannert, N.; Drach, J. C.; Townsend, L. B.; Bogner, E. Identification of acetylated, tetrahalogenated benzimidazole D-ribonucleosides with enhanced activity against human cytomegalovirus. J.Virol. 2007, 81, 11604–11611.
15. Warren, T. K.; Warfield, K. L.; Wells, J.; Enterlein, S.; Smith, M.; Ruthel, G.; Yunus. A. S.; Kinch, M. S.; Goldblatt, M.; Aman M. J.; Bavari S. Antiviral activity of a small-molecule inhibitor of filovirus infection. Antimicrob. Agents Chemother. 2010, 54, 2152–2159.
16. Ito, C.; Itoigawa, M.; Mishina, Y.; Filho, V. C.; Enjo, F.; Tokuda, H.; Nishino, H.; Furukawa, H. Chemical constituents of Calophyllum brasiliense. 2. structure of three new coumarins and cancer chemopreventive activity of 4-substituted coumarins. J. Nat. Prod. 2003, 66, 368–371.
17. Chilin, A.; Battistutta, R.; Bortolato, A.; Cozza, G.; Zanatta, S.; Poletto, G.; Mazzorana, M.; Zagotto, G.; Uriarte, E.; Guiotto, A.; Pinna, L. A.; Meggio, F.; Moro, S. Coumarin as attractive casein kinase 2 (CK2) inhibitor scaffold: an integrate approach to elucidate the putative binding motif and explain structure–activity relationships. J. Med. Chem. 2008, 51, 752–759.
18. Robert, S.; Bertolla, C.; Masereel, B.; Dogné, J. M.; Pochet, L. Novel 3-carboxamide-coumarins as potent and selective FXIIa inhibitors. J. Med. Chem. 2008, 51, 3077–3080.
19. Kamal, A.; Ramulu, P.; Srinivas, O.; Ramesh, G.; Kumar, P. P. Synthesis of C8-linked pyrrolo[2,1-c][1,4]benzodiazepinebenzimidazole conjugates with remarkable DNA-binding affinity. Bioorg. Med. Chem. Lett. 2004, 14, 4791–4794.
20.Chauhan, P. M. S.; Martins, C. J. A.; Horwell, D. C. Synthesis of novel heterocycles as anticancer agents. Bioorg. Med. Chem. 2005, 13, 3513–3518.
21.Demirayak, S.; Mohsen, U. A.; Karaburun, A. C. Synthesis and anticancer and anti-HIV testing of some pyrazino[1,2-a]benzimidazole derivatives. Eur. J. Med. Chem. 2002, 37, 255–260.
22.Garuti, L.; Roberti, M.; Malagoli, M.; Rossi, T.; Castelli, M. Synthesis and antiproliferative activity of some benzimidazole-4,7-dione derivatives. Bioorg. Med. Chem. Lett. 2000, 10, 2193–2195.
23.Lukevics, E.; Arsenyan, P.; Shestakova, I.; Domracheva, I.; Nesterova, A.; Pudova, O. Synthesis and antitumour activity of trimethylsilylpropyl substituted benzimidazoles. Eur. J. Med. Chem. 2001, 36, 507–515.
24.Handratta, V. D.; Vasaitis, T. S.; Njar, V. C. O.; Gediya, L. K.; Kataria, R.; Chopra, P., Jr.; Farquhar, R.; Guo, Z.; Qiu, Y.; Brodie, A. M. H. Novel C-17-heteroaryl steroidal CYP17 inhibitors/antiandrogens: synthesis, in vitro biological activity, pharmacokinetics, and antitumor activity in the LAPC4 human prostate cancer xenograft model. J. Med. Chem. 2005, 48, 2972–2984.
25.Curini, M.; Epifano, F.; Maltese, F.; Marcotullio, M.C.; Gonzales, S.P.; Rodriguez, J.C. Synthesis of collinin, an antiviral coumarin. Aust. J. Chem. 2003, 56, 59–60.
26.Bretner, M.; Baier, A.; Kopanska, K.; Najda, A.; Schoof, A.; Reinholz, M.; Lipniacki, A.; Piasek, A.; Kulikowsi, T.; Borowski, P. Synthesis and biological activity of 1H-benzotriazole and 1Hbenzimidazole analoguessinhibitors of the NTPase/helicase of HCV and of some related Flaviviridae. AntiViral Chem. Chemother. 2005, 16, 315–326.
27.Komazin, G.; Ptak, R. G.; Emmer, B. T.; Townsend, L. B.; Drach, J. C. Resistance of human cytomegalovirus to D- and L-Ribosyl benzimidazoles as a tool to identify potential targets for antiviral drugs. Nucleotides Nucleic Acids 2003, 22, 1725–1727.
28.Beaulieu, P. L.; Bousquet, Y.; Gauthier, J.; Gillard, J.; Marquis, M.; McKercher, G.; Pellerein, C.; Valois, S.; Kukolj, G. Non-nucleoside benzimidazole-based allosteric inhibitors of the hepatitis C virus NS5B polymerase: inhibition of subgenomic hepatitis C virus RNA replicons in Huh-7 Cells. J. Med. Chem. 2004, 47, 6884–6892.
29.Beaulieu, P. L.; Bös, M.; Bousquet, Y.; DeRoy, P.; Fazal, G.; Gauthier, J.; Gillard, J.; Goulet, S.; McKercher, G.; Poupart, M.-A.; Valois, S.; Kukolj, G. Non-nucleoside inhibitors of the hepatitis C virus NS5B polymerase: discovery of benzimidazole 5-carboxylic amide derivatives with low-nanomolar potency. Bioorg. Med. Chem. Lett. 2004, 14, 967–971.
30.Hwu, J. R.; Singha, R.; Hong, S. C.; Chang, Y. H.; Das, A. R.; Vliegen, I.; DeClercq, E.; Neyts, J. Synthesis of new benzimidazole–coumarin conjugates as anti-hepatitis C virus agents. Antiviral Res. 2008, 77, 157–162.
31.Neyts, J.; Clercq, E. D.; Singha, R.; Chang, Y. H.; Das, A. R.; Chakraborty, S. K.; Hong, S. C.; Tsay, S.-C.; Hsu, M.-H.; Hwu, J. R. Structure–activity relationship of new anti-hepatitis C virus agents: heterobicycle–coumarin conjugates. J. Med. Chem. 2009, 52, 1486–1490.
32.De Clercq, E. The design of drugs for HIV and HCV. Nat. Rev. Drug Discovery. 2007, 6, 1001–1018.
33.De Francesco, R.; Carfi, A. Advances in the development of new therapeutic agents targeting the NS3-4A serine protease or the NS5B RNA-dependent RNA polymerase of the hepatitis C virus. Adv. Drug Delivery Rev. 2007, 59, 1242–1262.
34.Galeone, A.; Mayol, L.; Oliviero, G.; Piccialli, G.; Varra M. Synthesis of a new N1-pentyl analogue of cyclic inosine diphosphate ribose(cIDPR) as a stable potential mimic of cyclic ADP ribose (cADPR). Eur. J. Org. Chem. 2002, 24, 4234–4238.
35.Moore, C. L.; Chiaramonte, M.; Higgins, T.; Kuchta, R. D. Synthesis of nucleotide analogues that potently and selectively inhibit human DNA primase. Biochemistry, 2002, 41, 14066–14075.
36.Long, M. C.; Parker, W. B. Structure–activity relationship for nucleoside analogs as inhibitors or substrates of adenosine kinase from Mycobaterium tuberculosis. Biochem. Pharmacol. 2006, 71, 1671–1682.
37.Ottria, R.; Casati, S.; Manzocchi, A.; Baldoli, E.; Mariotti, M.; Maier. A. M.; Ciuffreda, P. Synthesis and evaluation of in vitro anticancer activity of some novel isopentenyladenosine derivatives. Bioorg. Med. Chem. 2010, 18, 4249–4254.
38.Hyde, R. M.; Broom, A. D.; Buckheit, R. W. Antiviral amphipathic oligo- and polyribonucleotides: analogue development and biological studies. J. Med. Chem. 2003, 46, 1878–1885.
39.Ikejiri, M.; Saijo, M.; Morikawa, S.; Fukushi, S.; Mizutani, T.; Kurane, I.; Maruyama, T. Synthesis and biological evaluation of nucleoside analogues having 6-chloropurine as anti-SARS-CoV agents. Bioorg. Med. Chem. Lett. 2007, 17, 2470–2473.
40.Kaushik-Basu, N.; Bopda-Waffo, A.; Talele, T. T.; Basu, A.; Costa, R. R.; Silva, J. M.; Sarafianos, S. G.; Noel, F. Identification and characterization of coumestans as novel HCV NS5B polymerase inhibitors. Nucl. Acids Res. 2008, 36, 1482–1496.
41.Golisade, A.; Wiesner, J.; Herforth, C.; Jomaa, H.; Link, A. Anti-Malarial Activity of N6-Substituted Adenosine Derivatives. Bioorg. Med. Chem. 2002, 10, 769–777.
42.Kim, Y. A.; Sharon, A.; Chu, C. K.; Rais, R. H.; Al Safarjalani, O. N.; Naguib, N. M.; Kouni, M. H. Synthesis , biological evaluation and molecular modeling studies of N6-benzyladenosine analogues as potential anti-toxoplasma agents. Biochem. Pharmacol. 2007, 73, 1558–1572.
43.Ivanov, A. V.; Smirnova, O. A.; Golubeva, N. A.; Ivanov, M. A.; Tunitskaya, V. L.; Shipitsyn, A. V.; Alexandrova, L. A. Base-modified ribonucleosides as potential anit-hepatitis C virus agents. Nucleic acids symp. series. 2008, 52, 619–620.
44.Kaye, P. T.; Musa, M. A. A convenient and improved Baylis–Hillman synthesis of 3-substituted 2H-1-benzopyran-2-ones. Synthesis 2002, 18, 2701–2706.
45.(a) http://accelrys.com/ (b) http://www.molsci.com.tw/index.html
46.Brooks, B. R.; Brooks, C. L.; Mackerell, A. D.; Nillson, L.; Petrelia, R. J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; Caflisch, A.; Caves, L.; Cui, Q.; Dinner, A. R.; Feig, M.; Fischer, S.; Gao, J.; Hodoscek, M.; Im, W.; Kuczera, K.; Lazaridis, T.; Ma, J.; Ovchinnikov, V.; Paci, E.; Pastor, R. W.; Post, C. B.; Pu, J. Z.; Schaefer, M.; Tidor, B.; Venable, R. M.; Woodcock, H. L.; Wu, X.; Yang, W.; York, D. M.; Karplus, M. CHARMM: the biomolecular simulation program. J. Comput. Chem. 2009, 30, 1545–1614.
47.Kuhn, B.; Mohr, P.; Stahl, M. Intramolecular hydrogen bonding in medicinal chemistry. J. Med. Chem. 2010, 53, 2601–2611.
48.http://pubs.acs.org/page/joceah/submission/authors.html
49.Oliviero, G.; Amato, J.; Borbone, N.; D’Errico, S.; Piccialli, G.; Bucci, E.; Piccialli, V.; Mayol, L. Synthesis of 4-N-alkyl and ribose-modified AICAR analogues on solid support. Tetrahedron 2008, 64, 6475–6481.
50.Szarek, W. A.; Mario Pinto, B.; Iwakawa, M. Synthesis and biological activity of nucleoside analogs involving modifications in the carbohydrate ring. Can. J. Chem. 1985, 63, 2149–2161.
51.Casanova, E.; Perez-Perez, Maria-Juses.; Kappe, C. O. Microwave-assisted selective 5''-O-Trityl protection of inosine derivatives. Synlett. 2007, 11, 1733–1735.
52.Abramov, M.; Herdewijn, P. Synthesis and biological evaluation of inosine phosphonates. New J. Chem. 2010, 34, 875–876.
53.Luzzio, F. A.; Menes, M. E. A facile route to pyrimidine-based nucleoside olefins: application to the synthesis of d4T (Stavudine). J. Org. Chem. 1994, 59, 7267–7272.
54.Nakanishi, K.; Solomon, P. H. Infrared Absorption Spectroscopy, 2nd ed.; Holden-Day: Oakland, CA, 1977; p 38.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 合成腺苷與含氮雜環之硫烷鍵共軛化合物作為抗病毒試劑
2. 腺苷與香豆素共軛連結化合物之合成與其構形之探討
3. 順、逆式肉桂酸生理功效之探討 (I) 對人類肺癌細胞侵入轉移性之抑制功效 (II) 對多重抗藥性結核菌生長抑制與藥物協同功效
4. 探討新流感與季節性流感病毒受體結合特性
5. 二磷酸腺苷受體基因多型性與二磷酸腺苷引發血小板凝集能力之相關性探討
6. 以 Wittig-Knoevenagel 環化反應選擇性合成抗 B 型肝炎病毒藥物與其結構活性關係探討及以Friedlander 縮合反應合成含氮雜環多稠苯化合物初探
7. 開發快速合成唾液酸多醣之方法與製備唾液酸多醣晶片用於研究流感病毒表面抗原血液凝集素
8. 製備含有二氧化矽殼層結構之核殼型釔鋁石榴石螢光材料並探討銀奈米粒子對其螢光強度的影響
9. 合成含側鏈取代基之苯胺寡聚物及其在有機敏化太陽能電池的應用
10. N-亞柳胺基酸衍生之掌性氧釩錯合物催化 β-酮基酯類進行不對稱 1,4-共軛加成反應及 α-重氮酯類進行不對稱 N-H 嵌合反應之研究
11. 包覆新型鉑化合物於聚乳酸-甘醇酸中形成功能性奈米粒子
12. 二苯乙烯/笏之雙重鄰位混成系統螢光衍生物於有機電激發光二極體之應用
13. 全光域吸收之釕金屬光敏染料合成及其在染料敏化太陽能電池上之應用
14. 磷配位基之雙重金屬環化銥金屬磷光錯合物之合成、光物理性質及OLEDs元件的應用
15. 雜配三牙基二價釕金屬敏化染料之合成及應用
 
系統版面圖檔 系統版面圖檔