(3.238.174.50) 您好!臺灣時間:2021/04/18 16:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:余秀珊
研究生(外文):Hsiu-Shan Yu
論文名稱:磁流體力學中電漿團加速與磁場重聯率變化成因之數值模擬研究
論文名稱(外文):Simulation Study of the Causes of Plasmoid Acceleration and the Changes of Magnetic Reconnection Rate in Resistive MHD Plasmas
指導教授:呂凌霄
指導教授(外文):Ling-Hsiao Lyu
學位類別:博士
校院名稱:國立中央大學
系所名稱:太空科學研究所
學門:自然科學學門
學類:天文及太空科學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:116
中文關鍵詞:數值模擬電漿團加速磁場重聯磁流體力學
外文關鍵詞:resistive MHDacceleration of plasmamagnetic reconnectionacceleration of the plasmoidmagnetohydrodynamic simulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:217
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
日珥(或稱暗紋)噴發及日冕拋射物質常在迅速的加速之後伴隨著等速度傳播。相較於大尺度的日冕拋射物質,太陽閃焰為一小尺度的局部現象。過去的觀測結果顯示,由閃焰發生處的磁場環狀結構的足點運動及垂直太陽表面的正向磁場,所計算得出的磁場重聯率與日冕拋射物質之加速度在時間上有很好的正相關性[Zhang et al., 2001; 2004; Qiu et al., 2004; Jing et al., 2005]。本論文即利用加了磁場耗散效應的二維磁性流體模擬碼來研究(1)磁場重聯隨時間變化及其與電漿流加速的關聯性,(2)造成電漿流及電漿團的加速作用力,以及(3)磁通量變化對磁重聯率的影響。我們的研究結果顯示,磁場重聯後的快速流並不侷限在垂直磁場方向。平行磁場方向的快速流是由平行磁場的壓力梯度力所加速。而垂直磁場的淨力除了加速電漿流外,亦會加速電漿團。而電漿團的加速度除了受作用力影響外亦受電漿團內的質量所控制。我們發現磁性流體中的磁場重聯效應是由電流片中磁場消滅程度不均勻所造成的。磁場重聯的點並不侷限在中性點上,反而會隨著電流分叉的Y點移動。我們的研究也發現電漿團的快速噴射效應會拉長電流片進而暫時減緩磁場重聯速率,直到新的電漿團形成後,才會再度提昇磁重聯率。因此我們提出磁場重聯與電漿團加速作用之間的耦合理論:磁場重聯所產生的磁張力會加速電漿團,然而,快速移動的電漿團會拉長電流片進而降低磁場重聯率,但同時被拉長的電流片又會引發新的磁重聯,造成更多小尺度且高速移動的電漿團。同時我們也發現電漿團的最大移動速率會隨著它的大小和其中電漿的總質量增加而減少。
Prominence/filament eruptions and coronal mass ejections (CMEs) usually show an initial acceleration followed by a nearly constant propagation speed. Concerning about solar flares, it is a local feature in comparison with global feature of the initiation of CME. The magnetic reconnection rate deduced from the foot point motions of the solar flares and the magnetic field component normal to the solar surface and the acceleration of filament/CME show a good temporal correlation [Zhang et al., 2001; 2004; Qiu et al., 2004; Jing et al., 2005]. In this thesis, a two-dimensional resistive magnetohydrodynamic (MHD) simulation is carried out to study (1) the time evolution of the magnetic reconnection and its relation to the acceleration of plasma flow, (2) the forces that lead to the acceleration of the plasma and the plasmoid, and (3) the rate of magnetic flux variation effects on the reconnection rate. Our results show that the fast flows are not limited to the direction perpendicular to the local magnetic field. The fast parallel flows are accelerated by the parallel component of the pressure gradient force. The net force perpendicular to the magnetic field can accelerate the plasma and the plasmoid along the current sheet. The acceleration of the plasmoid is also controlled by the mass contained in the plasmoid. We found that the magnetic reconnection in MHD plasma is due to the non-uniform magnetic annihilation rate along the current sheet. The reconnection/reconfiguration site does not necessary stay at the neutral point. It can move with the Y-line next to the bifurcated current sheets. We also found that the fast ejection of the plasmoid can stretch the current sheet and consequently reduce the magnetic reconnection/reconfiguration rate temporally before a new plasmoid is formed. A mutual coupling theory of magnetic reconnection and acceleration of plasmoid is proposed: the magnetic tension force resulting from the magnetic reconnection will lead to the acceleration of plasmoid; however, the acceleration of plasmoid can stretch the current sheet and reduce the magnetic reconnection rate. But the stretched thin current sheet is favorable for the formations of small scale plasmoids. We also found that the speed of the plasmoid increases with decreasing the size of the plasmoid.
Table of Contents

摘 要 i
Abstract iii
致謝 v
Table of Contents vi
List of Figures vii
List of Tables xi
Chapter 1 Introduction 1
Chapter 2 Simulation Model 12
2.1 Simulation Model 12
2.2 Simulation Parameters 16
Chapter 3 Simulation Results 20
3.1 Overview of a Magnetic Reconnection/Reconfiguration Event 21
3.2 Time-dependent Change of Magnetic Flux 26
3.3 Force Responsible for Plasma/Plasmoid Acceleration 36
3.4 Mutual Coupling of Magnetic Reconnection/Reconfiguration and Plasmoid Acceleration 49
3.4.1 Saturation of the Plasmoid Acceleration 57
3.4.2 Saturation of the Magnetic Reconnection/Reconfiguration Rate 60
3.5 Dynamic Magnetic Reconnection Events Triggered by Density-Temperature Non-uniformity 64
Chapter 4 Discussion 69
Chapter 5 Summary 88
References 91
Asai, A., T. Yokoyama, M. Shimojo, and K. Shibata (2004a), Downflow Motions Associated with Impulsive Nonthermal Emissions Observed in the 2002 July 23 Solar Flare, Astrophys. J., 605, L77-L80.

Asai, A., T. Yokoyama, M. Shimojo, S. Masuda, H. Kurokawa, and K. Shibata (2004b), Flare Ribbon Expansion and Energy Release Rate, Astrophys. J., 611, 557-567.

Bhattacharjee, A., Y.-M. Huang, H. Yang, and B. Rogers (2009), Fast reconnection in high-Lundquist-number plasmas due to the plasmoid Instability, Phys. Plasmas, 16, 2102.

Birn, J., and M. Hesse (2001), Geospace Environment Modeling (GEM) magnetic reconnection challenge: Resistive tearing, anisotropic pressure and hall effects, J. Geophys. Res., 106, 3737-3750.

Birn, J., et al. (2001), Geospace Environmental Modeling (GEM) magnetic reconnection challenge, J. Geophys. Res., 106, 3715-3720.

Birn, J., et al. (2005), Forced magnetic reconnection, Geophys. Res. Lett., 32, 06105.

Biskamp, D. (1986), Magnetic reconnection via current sheets, Phys. Fluids, 29, 1520-1531.

Biskamp, D. (1996), Magnetic Reconnection in Plasmas, Astrophys. Space Sci., 242, 165-207.

Carmichael, H. (1964), A Process for Flares, NASA-SP, 50, 451.

Chen, J. (1996), Theory of prominence eruption and propagation: Interplanetary consequences, J. Geophys. Res., 101(A12), 27499-27519.

Chen, P. F., and K. Shibata (2000), An Emerging Flux Trigger Mechanism for Coronal Mass Ejections, Astrophys. J., 545, 524-531.

Cheng, C. Z., Y. Ren, G. S. Choe, and Y.-J. Moon (2003), Flux Rope Acceleration and Enhanced Magnetic Reconnection Rate, Astrophys. J., 596, 1341-1346.

Dere, K. P., G. E. Brueckner, R. A. Howard, D. J. Michels, and J. P. Delaboudiniere (1999), LASCO and EIT Observations of Helical Structure in Coronal Mass Ejections, Astrophys. J., 516, 465-474.

Drake, J. F., M. Swisdak, K. M. Schoeffler, B. N. Rogers, and S. Kobayashi (2006), Formation of secondary islands during magnetic reconnection, Geophys. Res. Lett., 33, 13105.

Dungey, J. W. (1958a), Cosmic electrodynamics, Cambridge University Press, Cambridge.

Dungey, J. W. (1958b), The Neutral Point Discharge Theory of Solar Flares. a Reply to Cowling''s Criticism, in Electromagnetic Phenomena in Cosmical Physics, edited by B. Lehnert, p. 135.

Dungey, J. W. (1961), Interplanetary Magnetic Field and the Auroral Zones, Phys. Rev. Lett., 6, 47-48.

Forbes, T. G., and E. R. Priest (1983), A numerical experiment relevant to line-tied reconnection in two-ribbon flares, Sol. Phys., 84, 169-188.

Forbes, T. G., and E. R. Priest (1995), Photospheric Magnetic Field Evolution and Eruptive Flares, Astrophys. J., 446, 377.

Forbes, T. G., and J. Lin (2000), What can we learn about reconnection from coronal mass ejections?, J. Atmos. Sol.-Terr. Phys., 62, 1499-1507.

Guo, W. P., and S. T. Wu (1998), A Magnetohydrodynamic Description of Coronal Helmet Streamers Containing a Cavity, Astrophys. J., 494, 419.

Harrison, R. A. (1991), Coronal transients and their relation to solar flares, Adv. Space Res., 11, 25-36.

Hiei, E., A. J. Hundhausen, and D. G. Sime (1993), Reformation of a coronal helmet streamer by magnetic reconnection after a coronal mass ejection, Geophys. Res. Lett., 20, 2785-2788.

Hirayama, T. (1974), Theoretical Model of Flares and Prominences. I: Evaporating Flare Model, Sol. Phys., 34, 323-338.

Howard, R. A. (2006), A Historical Perspective on Coronal Mass Ejections, AGU Geoph. Monog. Series, 165, 7.

Hundhausen, A. J. (1993), Sizes and locations of coronal mass ejections - SMM observations from 1980 and 1984-1989, J. Geophys. Res., 98, 13177.

Hundhausen, A. J., J. T. Burkepile, and O. C. St. Cyr (1994), Speeds of coronal mass ejections: SMM observations from 1980 and 1984-1989, J. Geophys. Res., 99, 6543-6552.

Ip, W.-H., and S.-P. Jin (1991), A 2D numerical study of recurrent driven reconnection processes at the magnetopause, Geophys. Res. Lett., 18, 1497-1500.

Jin, S.-P., and W.-H. Ip (1991), Two-dimensional compressible magnetohydrodynamic simulation of the driven reconnection process, Phys. Fluids B, 3, 1927-1936.

Jing, J., V. B. Yurchyshyn, G. Yang, Y. Xu, and H. Wang (2004), On the Relation between Filament Eruptions, Flares, and Coronal Mass Ejections, Astrophys. J., 614, 1054-1062.

Jing, J., J. Qiu, J. Lin, M. Qu, Y. Xu, and H. Wang (2005), Magnetic Reconnection Rate and Flux-Rope Acceleration of Two-Ribbon Flares, Astrophys. J., 620, 1085-1091.

Kopp, R. A., and G. W. Pneuman (1976), Magnetic reconnection in the corona and the loop prominence phenomenon, Sol. Phys., 50, 85-98.

Kuznetsova, M. M., M. Hesse, and D. Winske (2001), Collisionless reconnection supported by nongyrotropic pressure effects in hybrid and particle simulations, J. Geophys. Res., 106(A3), 3799-3810.

Kuznetsova, M. M., M. Hesse, L. Rastätter, A. Taktakishvili, G. Toth, D. L. De Zeeuw, A. Ridley, and T. I. Gombosi (2007), Multiscale modeling of magnetospheric reconnection, J. Geophys. Res., 112(A10), A10210.

Lai, S. H., and L. H. Lyu (2006), Nonlinear evolution of the MHD Kelvin-Helmholtz instability in a compressible plasma, J. Geophys. Res., 111, 01202.

Lai, S. H., and L. H. Lyu (2008), Nonlinear evolution of the jet-flow-associated Kelvin-Helmholtz instability in MHD plasmas and the formation of Mach-cone-like plane waves, J. Geophys. Res., 113, 06217.

Lai, S. H., and L. H. Lyu (2010), A simulation and theoretical study of energy transport in the event of MHD Kelvin-Helmholtz instability, J. Geophys. Res., 115, 10215.

Lee, E., G. K. Parks, M. Wilber, and N. Lin (2009), Nonlinear Development of Shocklike Structure in the Solar Wind, Phys. Rev. Lett., 103(3).

Lin, J., W. Soon, and S. L. Baliunas (2003), Theories of solar eruptions: a review, New Astronomy Review, 47, 53-84.

Lin, J., S. R. Cranmer, and C. J. Farrugia (2008), Plasmoids in reconnecting current sheets: Solar and terrestrial contexts compared, J. Geophys. Res., 113, 11107.

Liu, R., J. Lee, T. Wang, G. Stenborg, C. Liu, and H. Wang (2010), A Reconnecting Current Sheet Imaged in a Solar Flare, Astrophys. J., 723, L28-L33.

Low, B. C. (1996), Solar Activity and the Corona, Sol. Phys., 167, 217-265.

Low, B. C., and M. Zhang (2002), The Hydromagnetic Origin of the Two Dynamical Types of Solar Coronal Mass Ejections, Astrophys. J., 564, L53-L56.

Lyu, L. H. (1996), MHD simulation studies of 2-D and 3-D magnetic reconnection, in Proceedings of the Fifth Atmospheric Science Symposium, edited, p. 472, Tao-Yuan, Taiwan, R.O.C.

Ma, Z. W., and A. Bhattacharjee (2001), Hall magnetohydrodynamic reconnection: The Geospace Environment Modeling challenge, J. Geophys. Res., 106, 3773-3782.

MacQueen, R. M., A. J. Hundhausen, and C. W. Conover (1986), The propagation of coronal mass ejection transients, J. Geophys. Res., 91, 31-38.

Masuda, S., T. Kosugi, H. Hara, S. Tsuneta, and Y. Ogawara (1994), A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection, Nature, 371, 495-497.

Mikic, Z., and J. A. Linker (1994), Disruption of coronal magnetic field arcades, Astrophys. J., 430, 898-912.

Milligan, R. O., R. T. J. McAteer, B. R. Dennis, and C. A.
Young (2010), Evidence of a Plasmoid-Looptop Interaction and Magnetic Inflows During a Solar Flare/Coronal Mass Ejection Eruptive Event, Astrophys. J., 713, 1292-1300.

Narukage, N., and K. Shibata (2006), Statistical Analysis of Reconnection Inflows in Solar Flares Observed with SOHO EIT, Astrophys. J., 637, 1122-1134.

Otto, A. (2001), Geospace Environment Modeling (GEM) magnetic reconnection challenge: MHD and Hall MHD-constant and current dependent resistivity models, J. Geophys. Res., 106, 3751-3758.

Parker, E. N. (1957), Sweet''s Mechanism for Merging Magnetic Fields in Conducting Fluids, J. Geophys. Res., 62, 509-520.

Parker, E. N. (1963), The Solar-Flare Phenomenon and the Theory of Reconnection and Annihiliation of Magnetic Fields, Astrophys. J. Suppl. S., 8, 177.

Parker, E. N. (1973), The Reconnection Rate of Magnetic Fields, Astrophys. J., 180, 247-252.

Parks, G. K., et al. (2006), Larmor radius size density holes discovered in the solar wind upstream of Earth''s bow shock, Phys. Plasmas, 13(5).

Petschek, H. E. (1964), Magnetic Field Annihilation, NASA-SP, 50, 425.

Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling (1998), Numerical Recipes, Cambridge University Press, New York.

Qiu, J., and V. B. Yurchyshyn (2005), Magnetic Reconnection Flux and Coronal Mass Ejection Velocity, Astrophys. J., 634, L121-L124.

Qiu, J., J. Lee, D. E. Gary, and H. Wang (2002), Motion of Flare Footpoint Emission and Inferred Electric Field in Reconnecting Current Sheets, Astrophys. J., 565, 1335-1347.

Qiu, J., H. Wang, C. Z. Cheng, and D. E. Gary (2004), Magnetic Reconnection and Mass Acceleration in Flare-Coronal Mass Ejection Events, Astrophys. J., 604, 900-905.

Richtmyer, R. D., and K. W. Morton (1967), Difference Methods for Initial-Value Problems, 2nd ed., John Wiley, Hoboken, N. J.

Shibata, K. (1995), Coronal dynamics and flares: New results from Yohkoh SXT – Evidence of magnetic reconnection and a unified model of flares, in Proc. of the Second SOLTIP Symposium, STEP GBRSC NEWS, edited, pp. 85-96.

Shibata, K. (1996), New observational facts about solar flares from YOHKOH studies - evidence of magnetic reconnection and a unified model of flares, Adv. Space Res., 17, 9-18.

Shibata, K., and S. Tanuma (2001), Plasmoid-induced-reconnection and fractal reconnection, Earth Planets Space, 53, 473-482.

Shibata, K., S. Masuda, M. Shimojo, H. Hara, T. Yokoyama, S. Tsuneta, T. Kosugi, and Y. Ogawara (1995), Hot-Plasma Ejections Associated with Compact-Loop Solar Flares, Astrophys. J., 451, L83.

Sturrock, P. A. (1966), Model of the High-Energy Phase of Solar Flares, Nature, 211, 695-697.

Švestka, Z. (1996), Speeds of Rising Post-Flare Structures, Sol. Phys., 169, 403-413.

Sweet, P. A. (1958), The Neutral Point Theory of Solar Flares, in Electromagnetic Phenomena in Cosmical Physics, edited by B. Lehnert, p. 123.

Tsai, T. C., L. H. Lyu, J. K. Chao, M. Q. Chen, and W. H. Tsai (2009), A theoretical and simulation study of the contact discontinuities based on a Vlasov simulation code, J. Geophys. Res., 114, 12103.

Tsuneta, S., T. Takahashi, L. W. Acton, M. E. Bruner, K. L. Harvey, and Y. Ogawara (1992a), Global restructuring of the coronal magnetic fields observed with the YOHKOH Soft X-ray Telescope, Publ. Astron. Soc. JPN, 44, L211-L214.

Tsuneta, S., H. Hara, T. Shimizu, L. W. Acton, K. T. Strong, H. S. Hudson, and Y. Ogawara (1992b), Observation of a solar flare at the limb with the YOHKOH Soft X-ray Telescope, Publ. Astron. Soc. JPN, 44, L63-L69.

Wang, H., J. Qiu, J. Jing, and H. Zhang (2003), Study of Ribbon Separation of a Flare Associated with a Quiescent Filament Eruption, Astrophys. J., 593, 564-570.

Wang, T., L. Sui, and J. Qiu (2007), Direct Observation of High-Speed Plasma Outflows Produced by Magnetic Reconnection in Solar Impulsive Events, Astrophys. J., 661, L207-L210.

Webb, D. F., and A. J. Hundhausen (1987), Activity associated with the solar origin of coronal mass ejections, Sol. Phys., 108, 383-401.

Wu, S. T., W. P. Guo, and J. F. Wang (1995), Dynamical evolution of a coronal streamer-bubble system. 1: A self-consistent planar magnetohydrodynamic simulation, Sol. Phys., 157, 325-248.

Wu, S. T., W. P. Guo, and M. Dryer (1997), Dynamical Evolution of a Coronal Streamer - Flux Rope System - II. A Self-Consistent Non-Planar Magnetohydrodynamic Simulation, Sol. Phys., 170, 265-282.

Wu, S. T., A. H. Wang, S. P. Plunkett, and D. J. Michels (2000), Evolution of Global-Scale Coronal Magnetic Field due to Magnetic Reconnection: The Formation of the Observed Blob Motion in the Coronal Streamer Belt, Astrophys. J., 545, 1101-1115.

Wu, S. T., T. X. Zhang, M. Dryer, X. S. Feng, and A. Tan (2005a), The Role of Magnetic Reconnection in CME Acceleration, Space Sci. Rev., 121, 33-47.

Wu, S. T., T. X. Zhang, E. Tandberg-Hanssen, Y. Liu, X. Feng, and A. Tan (2005b), Numerical Magnetohydrodynamic Experiments for Testing the Physical Mechanisms of Coronal Mass Ejections Acceleration, Sol. Phys., 225, 157-175.

Yokoyama, T., K. Akita, T. Morimoto, K. Inoue, and J. Newmark (2001), Clear Evidence of Reconnection Inflow of a Solar Flare, Astrophys. J., 546, L69-L72.

Yu, H. S., L. H. Lyu, and S. T. Wu (2011), On the Causes of Plasmoid Acceleration and Changes in Magnetic Flux in a Resistive Magnetohydrodynamic Plasma, Astrophys. J., 726, 79.

Zenitani, S., and T. Miyoshi (2011), Magnetohydrodynamic structure of a plasmoid in fast reconnection in low-beta plasmas, Phys. Plasmas, 18, 2105.

Zenitani, S., M. Hesse, and A. Klimas (2009), Two-Fluid Magnetohydrodynamic Simulations of Relativistic Magnetic Reconnection, Astrophys. J., 696, 1385-1401.

Zenitani, S., M. Hesse, and A. Klimas (2010), Resistive Magnetohydrodynamic Simulations of Relativistic Magnetic Reconnection, Astrophys. J., 716, L214-L218.

Zhang, J., and K. P. Dere (2006), A Statistical Study of Main and Residual Accelerations of Coronal Mass Ejections, Astrophys. J., 649, 1100-1109.

Zhang, J., K. P. Dere, R. A. Howard, and A. Vourlidas (2004), A Study of the Kinematic Evolution of Coronal Mass Ejections, Astrophys. J., 604, 420-432.

Zhang, J., K. P. Dere, R. A. Howard, M. R. Kundu, and S. M. White (2001), On the Temporal Relationship between Coronal Mass Ejections and Flares, Astrophys. J., 559, 452-462.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔