(3.238.174.50) 您好!臺灣時間:2021/04/17 05:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:趙思棋
研究生(外文):Szu-Chi Chao
論文名稱:運用隱性回饋趨勢推薦產品方法之研究
論文名稱(外文):An interval-based Recommender System with Implicit Feedback
指導教授:許秉瑜許秉瑜引用關係
指導教授(外文):Ping-Yu Hsu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:企業管理研究所
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:56
中文關鍵詞:內容導向過濾法隱性回饋時間基礎推薦系統
外文關鍵詞:content-based recommender systemtime-based recommender systemimplicit feedback
相關次數:
  • 被引用被引用:0
  • 點閱點閱:134
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
 在現在電子商務蓬勃發展的時代中,消費者可以透過網路搜尋到許多產品資訊,但卻也讓他們面臨到資訊超載的問題。企業為了能節省消費者搜尋產品的時間、提高消費者滿意度並掌握其消費動向,經常會仰賴推薦系統以加強與消費者之間的關係。透過推薦系統可以分析消費者的消費習慣以及產品偏好,再依此提供合適的商品給消費者,以期待能提高消費者的購買意願。但傳統的推薦系統大多屬於靜態的,一般會將消費者某一期間的歷史資料進行分析並找出其喜好,但卻未考慮到消費者的喜好並不是持久不變,而是具有時間性。
  為了改善傳統推薦系統的推薦品質,本研究將考慮時間因素,提出了以時間為基礎的內容導向式推薦系統架構。本研究的目的在於觀測消費者隨著時間變化的交易行為並找出消費者的興趣趨勢,進而達到推薦符合消費者需求的產品。透過建置一套機制將消費者的交易行為轉成偏好的程度,再結合時間因子對分數進行調整,以分析消費者偏好的趨勢,有效的進行個人化推薦。本研究以某手機服務網站的交易資料做為實證資料以驗證其推薦效果,其結果顯示本方法較未考慮時間因素的傳統方法其精準度高出83.5%,顯示本研究方法更能有效的預測消費者在未來期間可能會購買的產品類別。
  The e-commerce is booming through rapid expansion of Internet. However, consumers can find many products and related information from the Internet, but also they face a problem to choose their right Internet within short time. Enterprises usually rely on a recommender system to strengthen the relationship with consumers, such as saving consumers’ search time, improving customer satisfaction and tracking the consumer behavior. Through recommender system enterprises can analyze the consumer behavior and product preferences and can provide the right goods to consumers to enhance the consumer''s purchase intention. However, most of the traditional recommender systems are static which identify consumers’ preferences by analyzing their historical data of the certain time period and those methods don’t consider a time factor that consumers’ preferences might change over time.
This study propose a time-based content based approach for recommendation that considers time factors to the operation of the recommender system to improve the efficiency of the traditional recommender systems. The purpose of this study is to recommend the products that meet the consumers’ demand, by observing the changes of consumers’ transactions over time and identifying trends in consumers’ interests. We establish a model to convert the consumer transactions to the degree of preference and combine with the time factor. By using this model, we analyze trends in the consumer purchase interests and provide personal recommendation efficiently. This study uses the mobile service transaction database to assess the performance of the proposed approach. The experiment result shows that the proposed approach can predict the consumers’ purchase interest efficiently in the products’ category level.
中文摘要                      i
Abstract                       ii
致謝                        iii
目錄                        iv
圖目錄                       v
表目錄                       vi
第一章 緒論                     1
第一節 研究背景與動機                1
第二節 研究目的                   3
第三節 研究架構                   4
第二章 文獻探討                   5
第一節 使用者回饋                  5
第二節 推薦系統與電子商務              8
第三節 消費者行為                  12
第三章 研究方法                   17
第一節 影片片段分析                 18
第二節 消費者行為分析                20
第三節 個人化推薦                  31
第四章 實證分析                   33
第一節 資料描述                   33
第二節 實驗設計                   34
第三節 實驗結果分析                 37
第四節 實驗結果比較                 42
第五章 結論與未來研究建議              44
第一節 結論                     44
第二節 未來研究建議                 45
參考文獻                      46
英文部分
Adomavicius, G.., and A. Tuzhilin, Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 734-749, 2005.
Andrews, J. C., S. Durvasula and S. M. Akhter, A Framework for Conceptualizing and Measuring the Involvement Construct in Advertising Research, Journal of Advertising, 19(4), 29, 1990.
Balabanovic,M., and Y. Shoham, Fab: Content-based, Collaborative Recommendation. Communications of the Association for Computing Machinery, 40(3), 66-72, 1997.
Cheung, K.W., K.C Tsui, and J. Liu, Extended latent class models for collaborative recommendation. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 34(1), 143-148, 2004.
Drucker, Peter F, Management: Tasks, Responsibilities, Practices, New York: Harper & Row, Inc, 1973.
Engel, J. F., D. T. Kollat, and R. D. Blackwell, Consumer Behaviors, 4th ed, Chicago: Dryden, 1982.
Engel, J. F., P. W. Miniard, and R. D. Blackwell, Consumer Behaviors, 8th ed, Forth Worth: Dryden, 1995.
Goldberg, D., D. Nichols, B. M. Oki, and D. Terry, Using collaborative filtering to weave an information tapestry. Communications of the ACM. 61-70, 1992.
Konstan, J. A., B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon, and J. Riedl, GroupLens: applying collaborative filtering to Usenet news. Communication of ACM, 40(3), 77-87, 1997.
Lee, T. Q., Y. Park, and Y. T. Park, A time-based approach to effective recommender systems using implicit feedback. ScienceDirect, Expert Systems with Applications, 34(4), 3055-3062, 2008.
Raymond, M. J., & R. Loriene, Content-based book recommending using learning for text categorization. ACM Conference on Digital Libraries, 195–204, 2000.
Morita, M., and Y. Shinoda, Information filtering based on user behavior analysis and best match text retrieval. Proceedings of the 17th annual international ACM SIGIR Conference on Research and Development in Information Ietrieval, 272-281, 1994.
Nichols, D.M., Implicit Rating and Filtering. Proceedings of the 5th DELOS Workshop on Filtering and Collaborative Filtering, 31-36, 1997.
Oard, D. W. and J. Kim, Implicit Feedback for Recommender Systems. Proceedings of the AAAI Workshop on Recommender Systems, 81-83,1998.
Resnick, P., & R.H. Varian, Recommender system. Communication of ACM,40(3), 56-58, 1997.
Sarwar, B., G. Karypis, J. A. Konstan, and J. Riedl, Analysis of Recommendation Algorithms for E-Commerce. Proceedings of the 2nd ACM conference on Electronic commerce, 158-167, 2000.
Schafer, J.B., J.A. Konstan, and J. Riedl, E-commerce Recommendation Applications. Data Mining and Knowledge Discovery, 5(1), 115-153, 2001.
Tang, T. Y., P. Winoto, and K. C. C. Chan, On the Temporal Analysis for Improved Hybrid Recommendations. IEEE/WIC International Conference on Web Intelligence, 214-220, 2003.
Walters, C. G.., and W. G.. Paul, Consumer behavior, an integrated framework, Homewood, Ill, R. D. Irwin Inc, 1970.

Watson, A., and M. A. Sasse, Measuring perceived quality of speech and video in multimedia conferencing applications. Proceedings of ACM Multimedia Conference, 55-60, 1998.
Wilkie, W. L., Consumer behavior, 3rd ed.,New York:John Wiley & Sons, Inc, 1994.

中文部分
Anderson, C.,李明等譯,長尾理論 : 打破80/20法則的新經濟學,大和書報圖書總經銷,2006。
林建煌,消費者行為二版,華泰文化事業股份有限公司,2007。
資策會Find中心,http://www.find.org.tw/find/home.aspx,2010。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔