|
[1] J. M. Maldacena, “The Large N limit of superconformal field theories and super- gravity,” Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)] [arXiv:hep-th/9711200]. [2] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, “Large N field theories, string theory and gravity,” Phys. Rept. 323, 183 (2000) [arXiv:hep- th/9905111]. [3] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2, 253 (1998) [arXiv:hep-th/9802150]. [4] C. M. Chen and J. R. Sun, “Hidden Conformal Symmetry of the Reissner- Nordstrøm Black Holes,” JHEP 1008, 034 (2010) [arXiv:1004.3963 [hep-th]]. [5] C. M. Chen, Y. M. Huang and S. J. Zou, “Holographic Duals of Near-extremal Reissner-Nordstrom Black Holes,” JHEP 1003, 123 (2010) [arXiv:1001.2833 [hep-th]]. [6] C. M. Chen, Y. M. Huang, J. R. Sun, M. F. Wu and S. J. Zou, “Twofold Hidden Conformal Symmetries of the Kerr-Newman Black Hole,” Phys. Rev. D 82, 066004 (2010) [arXiv:1006.4097 [hep-th]]. [7] C. M. Chen, J. R. Sun and S. J. Zou, “The RN/CFT Correspondence Revisited,” JHEP 1001, 057 (2010) [arXiv:0910.2076 [hep-th]]. [8] J. M. Bardeen and G. T. Horowitz, “The Extreme Kerr throat geometry: A Vacuum analog of AdS(2) x S**2,” Phys. Rev. D 60, 104030 (1999) [arXiv:hep- th/9905099]. [9] A. Strominger and C. Vafa, “Microscopic origin of the Bekenstein-Hawking en- tropy,” Phys. Lett. B 379, 99 (1996) [arXiv:hep-th/9601029]. [10] M. Guica, T. Hartman, W. Song and A. Strominger, “The Kerr/CFT Corre- spondence,” Phys. Rev. D 80, 124008 (2009) [arXiv:0809.4266 [hep-th]]. [11] A. Castro and F. Larsen, “Near Extremal Kerr Entropy from AdS(2) Quantum Gravity,” JHEP 0912, 037 (2009) [arXiv:0908.1121 [hep-th]]. [12] A. Castro, A. Maloney and A. Strominger, “Hidden Conformal Symmetry of the Kerr Black Hole,” Phys. Rev. D 82, 024008 (2010) [arXiv:1004.0996 [hep-th]]. [13] J. D. Brown and M. Henneaux, “Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity,” Com- mun. Math. Phys. 104, 207 (1986). [14] D. T. Son and A. O. Starinets, “Minkowski-space correlators in AdS/CFT cor- respondence: Recipe and applications,” JHEP 0209, 042 (2002) [arXiv:hep- th/0205051]. [15] M. Becker, S. Cremonini and W. Schulgin, “Extremal Three-point Correlators in Kerr/CFT,” JHEP 1102, 007 (2011) [arXiv:1004.1174 [hep-th]]. [16] M. Becker, S. Cremonini and W. Schulgin, “Correlation Functions and Hid- den Conformal Symmetry of Kerr Black Holes,” JHEP 1009, 022 (2010) [arXiv:1005.3571 [hep-th]]. [17] I. Bredberg, T. Hartman, W. Song and A. Strominger, “Black Hole Superradi- ance From Kerr/CFT,” JHEP 1004, 019 (2010) [arXiv:0907.3477 [hep-th]]. [18] B. Chen and C. S. Chu, “Real-time correlators in Kerr/CFT correspondence,” JHEP 1005, 004 (2010) [arXiv:1001.3208 [hep-th]]. [19] V. P. Frolov and K. S. Thorne, “Renormalized Stress-Energy Tensor Near the Horizon of a Slowly Evolving, Rotating Black Hole” Phys. Rev. D 39, 2125 (1989). [20] D. Z. Freedman, S. D. Mathur, A. Matusis and L. Rastelli, “Correlation func- tions in the CFT(d)/AdS(d + 1) correspondence,” Nucl. Phys. B 546, 96 (1999) [arXiv:hep-th/9804058]. [21] G. W. Gibbons and S. W. Hawking, “Action Integrals and Partition Functions in Quantum Gravity,” Phys. Rev. D 15, 2752 (1977). [22] H. Nastase, “Introduction to AdS-CFT,” arXiv:0712.0689 [hep-th]. [23] Sean Carroll ”Spacetime and Geometry: An Introduction to General Relativity” ISBN-13: 978-0805387322 [24] P. K. Townsend, “Black holes: Lecture notes,” arXiv:gr-qc/9707012. [25] J L Cardy ”Conformal invariance and universality in finite-size scaling” J. Phys. A: Math. Gen. 17 L385 1984 [26] Di Francesco P., Mathieu P., Senechal D. ”Conformal field theory” Springer, 1997 [27] J. McGreevy, “Holographic duality with a view toward many-body physics,” Adv. High Energy Phys. 2010, 723105 (2010) [arXiv:0909.0518 [hep-th]]. [28] I. Bredberg, C. Keeler, V. Lysov and A. Strominger, “Cargese Lectures on the Kerr/CFT Correspondence,” arXiv:1103.2355 [hep-th].
|