跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.88) 您好!臺灣時間:2024/12/04 13:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:唐富一
研究生(外文):Fu-Yi Tang
論文名稱:克爾-紐曼/共形場中的三點關聯函數
論文名稱(外文):Three-point correlators in Kerr-Newman/CFTs
指導教授:陳江梅
指導教授(外文):Chiang-Mei Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:95
中文關鍵詞:三點關聯函數AdS/CFT對偶黑洞全像原理黑洞
外文關鍵詞:Holographic principleblack holeAdS/CFT correspondenceThree-point correlators
相關次數:
  • 被引用被引用:0
  • 點閱點閱:189
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
我們首先回顧了Kerr黑洞在極端以及近極端的情況下與共形場論之間的對應關係。根據在共形場與在黑洞視界表面上計算出的熵是相等的,我們可以相信極端Kerr黑洞與共形場之間的確存在對應關係。更進一步藉由無質量的純量場在Kerr黑洞背景之中的散射,計算出在Kerr背景下純量場的吸收截面,與在邊界上的共形場中的兩點函數是一致的,所以Kerr黑洞在近極端的情況下與共形場之間也存在有對應關係。特別的,當無質量的純量場在頻率很低的情況下,其徑向波方程的解空間本身就含有SL(2,R)×SL(2,R)的共形對稱。我們利用這種特性研究Kerr-Newman黑洞,發現有兩種不一樣的共形場的對應關係,我們稱之為J圖像以及Q圖像。最後我們將原先在黑洞背景下計算的兩點函數推廣至三點函數,其結果與共形場中的三點函數相符。
We review the conjecture of Kerr/CFT correspondence in extremal and near-extremal
limit. By the matching of the CFT (Cardy formula) and black hole (Bekenstein-
Hawking formula) entropies, the conjecture of extreme Kerr/CFT correspondence is
confirmed. From the scattering of scalar field near the superradiance region in kerr
geometry, the matching of the absorption cross section and the finite-temperature
two-point function of dual CFT operator also implies the validity of near-extreme
Kerr/CFT correspondence. Moreover, for generic Kerr black holes, the SL(2, R) ×
SL(2, R) conformal symmetry can be obtained in the solution space of the radial wave
equation at low frequency. The black hole/CFT can be extended to the Kerr-Newman
(KN) black holes in which there are two individual pictures of dual CFT description,
called J- and Q-pictures. Finally we discuss the generalization the computation of two-
point function to the three-point function by assuming that there is a cubic interaction
in the bulk geometry. The three-point functions in both J- and Q-pictures of KN
geometry have a divergent term in the bulk integration near the boundary region. It
is consistent with the CFT finite-temperature three-point function.
1 Introduction
1
2 Kerr/CFT: central charges and temperatures
6
2.1 The NHEK geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Asymptotic symmetry group . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Central charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3 Kerr/CFT: superradiance scattering
14
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Near-NHEK geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.1 Superradiant modes . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Macroscopic greybody factor . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.1 Superradiance . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.2 Wave equation . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.3 Absorption probability . . . . . . . . . . . . . . . . . . . . . . 20
3.3.4 Near and far factors . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Microscopic greybody factor . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.1 Conformal dimensions . . . . . . . . . . . . . . . . . . . . . . 21
3.4.2 Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Real-time correlators . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4 Kerr/CFT: hidden conformal symmetry
26
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Massless scalar wave equation . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Near region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
i4.4 Conformal symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5 CFT interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5.1 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5.2 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.6 Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5 KN/CFTs: twofold hidden conformal symmetries
33
5.1 The Kerr-Newman black hole . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Charged scalar field in the KN background . . . . . . . . . . . . . . . 34
5.3 Angular momentum J-picture . . . . . . . . . . . . . . . . . . . . . . 34
5.3.1 Hidden Conformal Symmetry . . . . . . . . . . . . . . . . . . 34
5.3.2 Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3.3 Real-time correlator . . . . . . . . . . . . . . . . . . . . . . . 37
5.3.4 Return to Kerr/CFT . . . . . . . . . . . . . . . . . . . . . . . 39
5.4 Charge Q-picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.4.1 Hidden Conformal Symmetry . . . . . . . . . . . . . . . . . . 39
5.4.2 Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4.3 Real-time correlator . . . . . . . . . . . . . . . . . . . . . . . 42
5.4.4 Return to RN/CFT . . . . . . . . . . . . . . . . . . . . . . . . 43
5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6 Three-point function
46
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.2 Two- and three-point functions in near-NHEK geometry . . . . . . . 48
6.2.1 Two point function . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2.2 Three-point function . . . . . . . . . . . . . . . . . . . . . . . 50
6.2.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3 The three-point function for hidden conformal symmetry of Kerr/CFT 57
6.4 Three-point function in KN/CFTs . . . . . . . . . . . . . . . . . . . . 60
6.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.4.2 J-picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.4.3 Q-picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7 Conclusion
67
A Review of conformal field theory
72
A.1 Comformal group and algebra . . . . . . . . . . . . . . . . . . . . . . 72
A.2 Two-dimensional CFT . . . . . . . . . . . . . . . . . . . . . . . . . . 73
ii
A.3 Conformal generators . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.4 Primary Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
A.5 Correlation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
A.6 The Virasoro algebras in CFT . . . . . . . . . . . . . . . . . . . . . . 76
B Review of Anti de Sitter space
81
B.1 de Sitter space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
B.2 Anti de Sitter (AdS) space . . . . . . . . . . . . . . . . . . . . . . . . 82
C Euclidean correlators in AdS/CFT
85
D Lorentzian correlators in AdS/CFT
90
E Symmetry and Casimir operator of AdS3 in KN/CFTs
94
[1] J. M. Maldacena, “The Large N limit of superconformal field theories and super-
gravity,” Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113
(1999)] [arXiv:hep-th/9711200].
[2] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, “Large N field
theories, string theory and gravity,” Phys. Rept. 323, 183 (2000) [arXiv:hep-
th/9905111].
[3] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2,
253 (1998) [arXiv:hep-th/9802150].
[4] C. M. Chen and J. R. Sun, “Hidden Conformal Symmetry of the Reissner-
Nordstrøm Black Holes,” JHEP 1008, 034 (2010) [arXiv:1004.3963 [hep-th]].
[5] C. M. Chen, Y. M. Huang and S. J. Zou, “Holographic Duals of Near-extremal
Reissner-Nordstrom Black Holes,” JHEP 1003, 123 (2010) [arXiv:1001.2833
[hep-th]].
[6] C. M. Chen, Y. M. Huang, J. R. Sun, M. F. Wu and S. J. Zou, “Twofold
Hidden Conformal Symmetries of the Kerr-Newman Black Hole,” Phys. Rev. D
82, 066004 (2010) [arXiv:1006.4097 [hep-th]].
[7] C. M. Chen, J. R. Sun and S. J. Zou, “The RN/CFT Correspondence Revisited,”
JHEP 1001, 057 (2010) [arXiv:0910.2076 [hep-th]].
[8] J. M. Bardeen and G. T. Horowitz, “The Extreme Kerr throat geometry: A
Vacuum analog of AdS(2) x S**2,” Phys. Rev. D 60, 104030 (1999) [arXiv:hep-
th/9905099].
[9] A. Strominger and C. Vafa, “Microscopic origin of the Bekenstein-Hawking en-
tropy,” Phys. Lett. B 379, 99 (1996) [arXiv:hep-th/9601029].
[10] M. Guica, T. Hartman, W. Song and A. Strominger, “The Kerr/CFT Corre-
spondence,” Phys. Rev. D 80, 124008 (2009) [arXiv:0809.4266 [hep-th]].
[11] A. Castro and F. Larsen, “Near Extremal Kerr Entropy from AdS(2) Quantum
Gravity,” JHEP 0912, 037 (2009) [arXiv:0908.1121 [hep-th]].
[12] A. Castro, A. Maloney and A. Strominger, “Hidden Conformal Symmetry of the
Kerr Black Hole,” Phys. Rev. D 82, 024008 (2010) [arXiv:1004.0996 [hep-th]].
[13] J. D. Brown and M. Henneaux, “Central Charges in the Canonical Realization of
Asymptotic Symmetries: An Example from Three-Dimensional Gravity,” Com-
mun. Math. Phys. 104, 207 (1986).
[14] D. T. Son and A. O. Starinets, “Minkowski-space correlators in AdS/CFT cor-
respondence: Recipe and applications,” JHEP 0209, 042 (2002) [arXiv:hep-
th/0205051].
[15] M. Becker, S. Cremonini and W. Schulgin, “Extremal Three-point Correlators
in Kerr/CFT,” JHEP 1102, 007 (2011) [arXiv:1004.1174 [hep-th]].
[16] M. Becker, S. Cremonini and W. Schulgin, “Correlation Functions and Hid-
den Conformal Symmetry of Kerr Black Holes,” JHEP 1009, 022 (2010)
[arXiv:1005.3571 [hep-th]].
[17] I. Bredberg, T. Hartman, W. Song and A. Strominger, “Black Hole Superradi-
ance From Kerr/CFT,” JHEP 1004, 019 (2010) [arXiv:0907.3477 [hep-th]].
[18] B. Chen and C. S. Chu, “Real-time correlators in Kerr/CFT correspondence,”
JHEP 1005, 004 (2010) [arXiv:1001.3208 [hep-th]].
[19] V. P. Frolov and K. S. Thorne, “Renormalized Stress-Energy Tensor Near the
Horizon of a Slowly Evolving, Rotating Black Hole” Phys. Rev. D 39, 2125
(1989).
[20] D. Z. Freedman, S. D. Mathur, A. Matusis and L. Rastelli, “Correlation func-
tions in the CFT(d)/AdS(d + 1) correspondence,” Nucl. Phys. B 546, 96 (1999)
[arXiv:hep-th/9804058].
[21] G. W. Gibbons and S. W. Hawking, “Action Integrals and Partition Functions
in Quantum Gravity,” Phys. Rev. D 15, 2752 (1977).
[22] H. Nastase, “Introduction to AdS-CFT,” arXiv:0712.0689 [hep-th].
[23] Sean Carroll ”Spacetime and Geometry: An Introduction to General Relativity”
ISBN-13: 978-0805387322
[24] P. K. Townsend, “Black holes: Lecture notes,” arXiv:gr-qc/9707012.
[25] J L Cardy ”Conformal invariance and universality in finite-size scaling” J. Phys.
A: Math. Gen. 17 L385 1984
[26] Di Francesco P., Mathieu P., Senechal D. ”Conformal field theory” Springer,
1997
[27] J. McGreevy, “Holographic duality with a view toward many-body physics,”
Adv. High Energy Phys. 2010, 723105 (2010) [arXiv:0909.0518 [hep-th]].
[28] I. Bredberg, C. Keeler, V. Lysov and A. Strominger, “Cargese Lectures on the
Kerr/CFT Correspondence,” arXiv:1103.2355 [hep-th].
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top