跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/10 01:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉佑聖
研究生(外文):You-Sheng Liu
論文名稱:基於 Copula 模型的資產配置及台灣股票市場的應用
論文名稱(外文):Portfolio Selection Based on Copula Models with Applications in Taiwan Stock Market
指導教授:鄧惠文鄧惠文引用關係
指導教授(外文):Huei-Wen Teng
學位類別:碩士
校院名稱:國立中央大學
系所名稱:統計研究所
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:41
中文關鍵詞:非對稱相關模擬退火法copula投資組合
外文關鍵詞:simulated annealingportfolio selectioncopulaasymmetric dependence
相關次數:
  • 被引用被引用:0
  • 點閱點閱:533
  • 評分評分:
  • 下載下載:152
  • 收藏至我的研究室書目清單書目收藏:1
最近在金融實證上的文獻指出,在股價報酬率的聯合分佈具有不對稱的相關性。Copula 提供一個方便的架構去描述不對稱的相關性結構。在這篇論文中,我們比較傳統上對報酬率作的常態分佈假設與使用Copula 建構出比較彈性的多元分佈。在Markowitz 的Mean-Variance 架構下,我們考慮一個風險趨避的投資者配置財富於不同的資產。我們用Copula 去建構高維度報酬率的分佈並使用模擬退火法去選擇最佳的權重。最後我們應用我們的方法於投資組合在台灣的股票市場。
Recent studies in the empirical finance literature have reported asymmetric dependence in the joint distribution of stock returns. Copula provides a convenient framework to describe asymmetric dependence structure. In this thesis, we compare traditional multivariate normal distribution assumption for return and a flexible multivariate distribution using copula. Under Markowitz’s mean-variance framework (Markowitz, 1952), we consider a risk averse investor allocating wealth among different assets. We use copula to construct high-dimensional distribution of return, and propose a simulated annealing algorithm to select the optimal portfolio weights. We apply our approach for portfolio selection in Taiwan stock market.
Contents
1 Introduction 1
2 Preliminaries 3
2.1 Portfolio optimization . . . . . . . . . . . . . . . . . . . 3
2.1.1 Mean-Variance Model . . . . . . . . . . . 3
2.1.2 The solution of the Mean-Variance Model . . 4
2.1.3 The Expected Utility model . . . .. . . . . 4
2.2 Copulas . . . . . . . . . . . 5
3 Our approaches 9
3.1 Model calibration . . . . . . . . . . . . 9
3.2 Simulated annealing . .. . . . . . . . . . . 10
4 Simulation 11
4.1 Model calibration . . . .. . . . . . . . . . 11
4.2 Searching optimal weights using simulated annealing 13
5 Real data analysis 16
5.1 Two stocks . . . . . . . . . . 16
5.2 Three stocks . . . . . . . . . . . . 22
6 Conclusion 28
6.1 Summary . . . . . . . . . . . . . . . . . 28
6.2 Future work . . . . . . . . . . . . . . 28
References 30
[1] Ang, A., and Chen, J. Asymmetric correlations of equity portfolios. Journal of
Financial Economics 63 (2002), 443–494.
[2] Erb, C. B., Harvey, C. R., and Viskanta, T. E. Forecasting international
equity correlations. Financial Analysts Journal 50 (1994), 32–45.
[3] Greyserman, A., Jones, D. H., and Strawderman, W. E. Portfolio selec-
tion using hierarchical bayesian analysis and MCMC methods. Journal of Banking
Finance 30 (2006), 669–678.
[4] Harvey, C. R., Liechty, J. C., Liechty, M. W., and M¨uller, P. Portfolio
selection with higher moments.
[5] Joe, H. Multivariate Models and Dependence Concepts. Chapman and Hall., Lon-
don, 1997.
[6] Longin, F., and Solnik, B. Extreme correlation of international equity markets.
Journal of Finance 56 (2001), 649–676.
[7] Markowitz, H. Portfolio selection. The Journal of Finance 7 (1952), 77–91.
[8] Nelsen, R. B. An Introduction to Copulas. Springer-Verlag., New York, 1999.
[9] Patton, A. J. On the out-of-sample importance of skewness and asymmetric de-
pendence for asset allocation. Journal of Financial Econometrics 2 (2004), 130–168.
[10] Sklar, A. Fonctions de repartition ´a n dimensions et leurs marges. Publications de
l Institut Statistique de lUniversite de Paris 8 (1959), 229–231.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top