(3.238.88.35) 您好!臺灣時間:2021/04/10 19:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱治中
研究生(外文):Chih-chung Chiu
論文名稱:阻抗性生物感測器的形狀對靈敏度的影響之二維電場模擬
論文名稱(外文):Two-dimensional Electric-field Simulation for Effect of Electrode Geometry on Sensitivity of Impedimetric Biosensor
指導教授:蔡章仁蔡章仁引用關係
指導教授(外文):Jang-zern Tsai
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程研究所碩士在職專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:150
中文關鍵詞:指叉形電極阻抗式生物感測器靈敏度電極結構
外文關鍵詞:GeometrySensitivityImpedimetric BiosensorInterdigitated electrode
相關次數:
  • 被引用被引用:1
  • 點閱點閱:215
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
生物晶片技術其主要特點是可靠性高、精確性高、分析速度快、所使用的樣品及試劑少,就可獲得相關的樣品資訊。由於阻抗式生物感測器不斷朝向微小化目標邁進,可以使巔峰阻抗變大讓待測物更容易檢測,但電極的結構形狀卻會影響其晶片之量測特性,而無法得到有效之晶片的設計下將阻礙生物感測器的發展。針對不同的待測物如細胞、人類遺傳基因及蛋白質,因其粒子大小、介電係數或是濃度不同,因此待測物放置在不同的電極形狀結構時,所量測到的各項樣品資訊也會有不同的結果產生。因此本研究設計模擬了五種不同形狀的電極結構: 指叉形電極、長方形電極、圓形電極、三角形電極和碟形電極。故本文嘗試以ADS電磁模擬套裝軟體對於不同電極形狀做各種不同特性模擬研究,其中包括阻抗值及電容值的大小變化差異、電場強度分佈、靈敏度高低和待測物放置位置不同的阻抗變化模擬研究分析,進而讓設計者以這些模擬的各項數據為參考,依照不同的量測項目去設計最佳化的電極結構。最後由模擬數據可以得知五種電極的電容值大小,指叉形電極為1.600×10-14F、長方形電極為1.086×10-14F、圓形電極為6.513×10-15F、三角形電極為6.576×10-15F和碟形電極為9.924×10-15F。另外將待測物分子區分成會移動或是不會移動的情況,指叉形電極因兩電極間電場強度為均勻分佈,適合量測不會移動的待測物,當待測物放置在不同位置且電場強度相同時,其阻抗變化率只有 0.19%。而三角形電極因電極間電場強度和周圍不同,所以適合量測會移動的待測物,當待測物放置在不同位置且電場強度不相同時,其阻抗變化率為 4.54%,因此可以用來偵測待測物移動位移量,而指叉形電極和三角形電極在偵測待測物在不同位置的阻抗變化,三角形的阻抗變化為指叉形電極的 23 倍。另外指叉形電極的靈敏度為這幾種電極中最為靈敏的可達到 60.34 %,為本研究中阻抗變化最靈敏的電極結構。故可參考以上五種不同結構電極的靈敏度結果,配合實際硬體電極結構製作最佳靈敏度的電極結
構。
This research studied five different designs of electrode-pair geometry for impedimetric biosensing applications. These included interdigitated, rectangular, circular, triangular, and dish electrode pairs. ADS (Advanced Design System) software was utilized to simulate these different electrode-pair designs on their impedance, capacitance, and electric intensity. The simulated capacitances of these five electrode-pair geometries of commensurate dimensions were 1.600 × 10-14 F, 1.086 × 10-14 F, 6.513 × 10-15 F, 6.576 × 10-15 F, 9.924 × 10-15 F, respectively. One of the simulations showed that the electric intensity in the area-of-interest in the interdigitated electrode pair was quasi-uniform. A sensor of this geometry will be insensitive to the movement of the measured object. An impedance change of merely 0.19% was caused by changing location of the measured object. The electric intensity in the area-of-interest in the triangular electrode pair was non-uniform. A sensor of this geometry will be able to sense the movement of the measured object. An impedance change of up to 4.54% was caused by changing the location of the measured object. Among the five electrode-pair types, the interdigitated one had the highest sensitivity. Adding measured substance caused 60.43% impedance change from the status with background solution only. The results of this study will be useful for guiding the electrode-pair geometry design of 
impedimetric biosensors.
中文摘要 I
Abstract III
致謝 IV
目錄 V
第一章 緒論 1
1-1前言 1
1-2 生物感測器介紹 3
1-2-1 歷史介紹 3
1-2-2 組成結構 3
1-3 電化學生物感測器之阻抗特性 7
1-3-1 電路元件參數 7
1-3-2 電泳原理 11
1-3-3 介電電泳原理 13
1-3-4 電路模型結構探討 19
1-3-5 阻抗檢測文獻回顧和原理 22
1-4 阻抗式生物感測器簡介 27
1-4-1 阻抗式電極的等效電路元件 27
1-4-2 阻抗式電極運用範圍 28
1-4-3 阻抗式電極形狀 31
第二章 研究背景 39
2-1 研究動機 39
2-2 研究目標 40
第三章 電阻式生物感測器模擬步驟及實驗方法 41
3-1 電阻特性應於不同結構之生物感測器之模擬研究 41
3-1-1實驗名稱 41
3-1-2實驗目的 41
3-1-3模擬工具 41
3-1-4實驗背景 41
3-1-5實驗方法 46
3-1-6實驗材質選用 49
3-1-7 各種不同電極結構的設計 50
第四章 實驗結果與討論 55
4-1 不同電極結構之阻抗值和電容值模擬 55
4-2 指叉形電極結構 55
4-2-1 指叉形電極結構實驗數據 56
4-2-2 指叉形電極結構的討論 58
4-3 長方形電極結構 61
4-3-1 長方形電極結構實驗數據 62
4-3-2 長方形電極結構的討論 64
4-4 圓形電極結構 67
4-4-1 圓形電極結構實驗數據 68
4-4-2 圓形電極結構的討論 70
4-5-1 三角形電極結構實驗數據 74
4-5-2 三角形電極結構的討論 76
4-6 碟形電極結構 79
4-6-1 碟形電極結構實驗數據 80
4-6-2 碟型電極結構的討論 82
4-7 五種電極結構阻抗值和電容值比較 84
4-8 不同結構電場強度均勻 88
4-9 待測物分子模擬實驗 91
4-9-1待測物分子實驗參數 91
4-9-2待測物分子實驗參數討論 98
4-9-3不同結構形狀且相同面積的靈敏度比較 100
4-9-4 指叉形電極使用不同濃度之PBS和不同待測物阻抗比較 107
4-10 單一待測物分子位置模擬實驗 115
4-10-1 單一待測物位置參數設定 115
4-10-2 單一待測物位置參數討論 118
第五章 結論 120
未來展望 124
參考文獻 125
[1] 財團法人國家實驗研究院科技政策研究與資訊中心 2005 年市場報告, 來源:Helmut Kaiser Consultancy 2004 2009 年6月20日取自 http://cdnet.stpi.org.tw/techroom/market/bio/bio033.htm http://iknow.stpi.org.tw/Post/Read.aspx?PostID=1003
[2] L. Clark, C. Lyons, Electrode Systems for Continuous Monitoring in Cardiovascular Surgery, Ann. NY Acad. Sci. 102 (1962) 29-45.
[3] A. Chaubey, B.D. Malhotra, Mediated biosensors, Biosensors & Bioelectronics    17 (2002) 441–456.
[4] 謝振傑, 光纖生物感測器文, 物理雙月刊(廿八卷四期)2006年8月。
[5] P. Bergveld, Development of an Ion-Sensitive Solid-State Device for Neuro- physiological Measurements, IEEE TRANSACTIONS ON BIO-  MEDICAL ENGINEERING (1970) JANUARY.
[6] X. Huang and D.W. Greve, Impedance Based Biosensor Array for Monitoring Mammalian Cell Behavior.
[7] Q. Liua, J. Yuc, Impedance studies of bio-behavior and chemosensitivity of    cancer cells by micro-electrode arrays, Biosensors and Bioelectronics 24 (2009)1305–1310.
[8] L. Yang, Y. Li, Inter-digitated microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimurium, Biosensors and Bioelectronics 19 (2004) 1139–1147.
[9] A. Tiselius, A new apparatus for electrophoretic analysis of colloidal mixtures,    Trans. Faraday. (1937) Soc 33 524.
[10] 粘正勳,邱聞鋒, 介電泳動─承先啟後的奈米操縱術, 物理雙月刊(廿三卷六期)2004年6月。
[11] H. Pohl, Dielectrophoresis, Cambridge Univ. Press, Cambridge (1978).
[12] T.B. Jones, IEEE Engineering in Medicine and Biology Magazine, Nov/Dec (2003) 33-42.
[13] T.B. Jones, Electromechanics of Particles, New York: Cambridge University Press (1995).
[14] 賴民峰, 電阻抗分析於自組性單層薄膜之特性評估與其在生物檢測上之應用, 國立成功大學醫學工程研究所碩士論文。
[15] C. Ruan, L. Yang, and Y. Li, Immuno-biosensor Chips for Detection of Escherichia coli O157:H7 Using Electrochemical Impedance Spectroscopy, Anal Chem. (2002) 74 4814-4820.
[16] L. Yang, Y. Li, AFM and impedance spectroscopy characterization of the immobilization of antibodies on indium–tin oxide electrode through self-assembled monolayer of epoxysilane and their capture of Escherichia coli O157:H7, Biosensors and Bioelectronics 20 (2005) 1407–1416.
[17] D. Berdat, A. Marin, DNA biosensor using fluorescence microscopy and impedance spectroscopy, D. Berdat et al. / Sensors and Actuators B 118 (2006) 53–59.
[18]  J.G. GUAN, Y.Q. MIAO, Q.J. ZHANG, Impedimetric Biosensors, JOURNAL OF BIOSCIENCE AND BIOENGINEERING Vol. 97, No. 4, (2004) 219–226.
[19] R. Rica, C. Sanchez, A. Baldi, Polysilicon interdigitated electrodes as impedimetric sensors, Electrochemistry Communications 8 (2006) 1239-1244.
[20] Q. Liua, J. Yuc, Impedance studies of bio-behavior and chemosensitivity of cancer cells by micro-electrode arrays, Biosensors and Bioelectronics 24 (2009) 1305–1310.
[21] A.G. Saum, R.H. Cumming, F.J. Rowell, Use of substrate coated electrodes and AC impedance spectroscopy for the detection of enzyme activity. Biosens. Bioelectron. 13 (1998) 511–518.
[22] S. Grant, F. Davis, K.A. Law, A.C. Barton, S.D. Collyer, Label-free and reversible immunosensor based upon an ac impedance interrogation protocol. Anal. Chem. Acta 537 (2005) 163–168.
[23] K.S. Ma, H. Zhou, J. Zoval, M. Madou, DNA hybridization detection by label free versus impedance amplifying label with impedance spectroscopy. Sens Actuators B 114 (2006) 58–64.
[24] W.M. Hassena, C. Chaix, A. Abdelghani, An impedimetric DNA sensor based on functionalized magnetic nanoparticles for HIV and HBV detection, Sensors and Actuators B 134 (2008) 755–760.
[25] N.N. Mishra, S. Retterer, T.J. Zieziulewicz, M. Isaacson, D. Szarowski, D.E. Mousseau, D.A. Lawrence, J.N. Turner, On-chip microbiosensor for the detection of human CD4+ cells based on ac impedance and optical analysis. Biosens. Bioelectron. 21 (2005) 696–704.
[26] E.E. Krommenhoek, J.G. Gardeniers, J.G. Bomer, A. Van, X. Li, M. Ottens, Monitoring of yeast cell concentration using a micromachined impedance sensor. Sens. Actuators B 115 (2006) 384–389.
[27] S.M. Radke, E.C. Alocilja, Design and fabrication of a microimpedance biosensor for bacterial detection. IEEE Sens. J. 4 (2004) 434–440.
[28] R. Oberg, D.T. Morisette, R. Bashir, Impedanc microbiology-on-a-chip: micro-    fluidic bioprocessor for rapid detection of bacterial metabolism. IEEE J. MEMS 14 (2005) 829–838.
[29] C. Tlili, K. Reybier, Fibroblast Cells: A Sensing Bioelement for Glucose Detection    by Impedance Spectroscopy, Anal. Chem. 75 (2003) 3340-3344.
[30] M. Cortina, M.J. Esplandiu, S. Alegret, M. del Valle, Urea impedimetric biosensor based on polymer degradation onto inter-digitated electrodes, Sensors and Actuators B 118 (2006) 84–89.
[31] W.O. Ho, S. Krause, Electrochemical Sensor for Measurement of Urea and Creatinine in Serum Based on ac Impedance Measurement of 11Enzyme -Catalyzed Polymer Transformation, Anal. Chem. 71 (1999) 1940-1946.
[32] H.I. Arwin, I. Lundstrom, W.D. Stanbro, Electrode desorption method for determination of enzymatic activity. Med. Biol. Eng. Comput. 20 (1982) 362–374.
[33] J.Bernstein, 1868. Uber den zeitlichen verlanf der negativen schwankung des nervenstroms. The Journal of the Center for Archaeoastronomy 1 173-207.
[34] F. Patolsky, M. Zayats, E. Katz, I. Willner, “Precipitation of an insoluble product on enzyme monolayer electrodes for biosensor applications:characterization by faradaic impedance spectroscopy, cyclic voltammetry, and microgravimetric quartz crystal microbalance analysis”, Analytical Chemistry, 71 (1999) 3171-3180.
[35] 康宏銘, 實驗設計法應用於鈷-鎳-銅氧化物電極氧氣生成之電化學行為, 國立成功大學化學工程研究所碩士論文。
[36] J G Webster, Adam Hilger, Eelctrical Impedance Tomography, Bristol 1990.
[37] CMS300 Electrochemical System Operator’s Manual, Gamery Instruments, Inc., USA (1993).
[38] J. B. Allen, R. F. Larry, “Electrochemical Methods”,John and Sons,Chap.9, 316, New Year, (1980).
[39] 黃鯤鵬, 以交流阻抗分析法量測高方向性氧化鋅奈米柱陣列電性之研究, 國立成功大學化學工程研究所碩士論文。
[40] J. M. Miljkovic H., M. Tasic H., S. Rajs, Z. Vukmirovic, “Precipitation onset detection with a rain sensor of improved sensitivity,” Atmospheric Environment 34 (2000) 5175-5181. 
[41] M. Ucar, H. M. Ertunc, O. Turkoglu, “The Design and Implementation of Rain Sensitive Triggering System for Windshield Wiper Motor,” Electric Machines and Drives Conference, IEMDC (2001)329-336. 
[42] 許煜政, 蔡習訓, 薄膜阻抗式車窗雨滴感測之初探, 國科會NSC95-2516-S-131-002。
[43] 感測器原理與應用-吳郎編著, 全華圖書股份有限公司。
[44]  C. Iliescu, D.P. Poenar, A microfluidic device for impedance spe- Ctroscopy analysis of biological samples, Sensors and Actuators B 123 (2007) 168–176.
[45] D.P. Poenar, C. Iliescu, Glass-based microfluidic device fabricated by parylene wafer-to-wafer bonding for impedance spectroscopy, Sensors and Actuators A 139 (2007) 162–171.
[46] S.K. Kim, J.H. Kim, Continuous Low-Voltage dc Electroporation on a Microfluidic Chip with Polyelectrolytic Salt Bridges, Anal. Chem. 79 (2007) 7761-7766
[47] Y.H. Cho, T.Yamamoto, Y. Sakai, Development of microfluidic device for Electrical Physical Characterization of Single Cell, IEEE (2006) 1057-7157.
[48] V. Senez, E. Lennon, S. Ostrovidov, T. Yamamoto, H. Fujita, Y. Sakai, and T. Fujii, Integrated 3-D Silicon Electrodes for Electrochemical Sensing in Microfluidic Environments Application to Single-Cell Characterization, IEEE SENSORS JOURNAL, MAY (2008) VOL. 8 NO. 5.
[49] M. Varshney , Y. Li , A label-free, microfluidics and inter-digitated array microelectrode-based impedance biosensor in combination with nanoparticles immunoseparation for detection of Escherichia coli O157 H7 in food samples, Sensors and Actuators B 128 (2007) 99–107.
[50] L. Yang, Electrical impedance spectroscopy for detection of bacterial cells in suspensions using interdigitated microelectrodes, Talanta 74 (2008) 1621–1629.
[51] Z. Zou, J. Kai, Functionalized nano interdigitated electrodes arrays on polymer with integrated microfluidics for direct bio-affinity sensing using impedimetric measurement, Sensors and Actuators A 136 (2007) 518–526.
[52] M. Varshney , Y. Li, Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle–antibody conjugates for detection of Escherichia coli O157 H7 in food samples, Biosensors and Bioelectronics 22 (2007) 2408–2414.
[53] S.C. Mukhopadhyay, A Novel Planar-Type Biosensor for Non-invasive Meat Inspection, IEEE SENSORS JOURNAL, SEPTEMBER (2007) VOL. 7, NO. 9.
[54] L. Yang, Y. Li, Interdigitated Array Microelectrode -Based Electrochemical Impedance Immunosensor for Detection of Escherichia coli O157 H7, Anal.  Chem. 76 (2004) 1107-1113.
[55] W. Laureyn, D. Nelis, P. Van Gerwen, K. Baert, L. Hermans, R. Magnee, J.J. Pireaux, G. Maes, Nanoscaled interdigitated titanium electrodes for impedimetric iosensing, Sensors and Actuators B 68 (2000) 360-370.
[56] C.C. Lin, L.C. Chen, C.H. Huang, S.J. Ding, C.C. Chang, H.C. Chang,Development of the multi-functionalized gold nanoparticles with electrochemical-based immunoassay for protein A detection, Electroanalytical Cemistry 619-620 (2008) 39-45.
[57] 易皓文, 探討不同幾何形狀之銀電極萃取DNA之研究, 國科會計畫編號NSC95-2815-C-415-028-B。
[58] L.S. Jang, M.H. Wang, Micro-fluidic device for cell capture and impedance measurement, Biomed Microdevices (2007) 9 737–743.
[59] J.W. Wang, M.H. Wang, Effects of electrode geometry and cell location on single-cell impedance measurement, Biosensors and Bioelectronics 25 (2010) 1271–1276.
[60] C. Berggren, B. Bjarnason, G. Johansson, Capacitive Biosensors, WILEY-VCH    Verlag GmbH, D-69469 Weinheim (2001).
[61] A.V. MAMISHEV, Interdigital Sensors and Transducers, PROCEEDINGS OF THE IEEE, MAY (2004) VOL. 92, NO. 5.
[62] P.V. Gerwen, W. Laureyn, Nanoscaled interdigitated electrode arrays for biochemical sensors, Sensors and Actuators B 49 (1998) 73–80.
[63] A.R.M. Syaifudin, S.C. Mukhopadhyay, P.L. Yu, Electromagnetic Field Computation using COMSOL Multiphysics to Evaluate the Performance of Novel Inter-digital Sensors, IEEE (2009) 978-1-4244-4819.
[64] J. Hong ,Jpn. J. Appl. Phys, And Corning Glass 7740 Properites, Vol. 43. No. 8A (2004).
[65] V. Leus, D. Elata, FRINGING FIELD EFFECT IN ELECTROSTATIC ACTUATORS, TECHNICAL REPORT ETR (2004) 2.
[66] K.S. Su, H.J. Yin, Analysis of Electromagnetic Interference and Shielding Effectiveness for Power Transmission Line, Department of Electrical Engineering National Kaohsiung University of Applied Sciences.
[67] W. Mitchell, R. Sundararajan, Electric Field Distribution in Biological Tissues for Various Electrode Configurations-A FEMLAB Study, Electronics & Computer Engineering Technology Arizona State University, Mesa, AZ-85212.
[68] T. Heida, W.L.C. Rutten, E. Marani, Understanding dielectrophoretic trapping of neuronal cells: modelling electric field, electrode–liquid interface and fluid flow, T Heida et al (2002) J. Phys. D: Appl. Phys. 35 1592.
[69] Dependence of capacitance on electrode configuration for ferroelectric films with interdigital electrodes.
[70] A.R. Mohd Syaifudin, K. P. Jayasundera , and S. C. Mukhopadhyay, A novel planar interdigital sensor based sensing and instrumentation for detection of dangerous contaminated chemical in seafood, IEEE (2009) 978-1-4244-3353.
[71] A.R.M. Syaifudin, M.A. Yunus, S.C. Mukhopadhyay, A Novel Planar Interdigital Sensor for Environmental Monitoring, IEEE (2009) 978-1-4244-5335.
[72] A.R.M. Syaifudin, P.L. Yu,S. C. Mukhopadhyay, Performance evaluation of a new novel planar interdigital sensors.
[73] C.K. Yang, J.S. Chang, Two dimensional simulation on immunoassay for a biosensor with applying electrothermal effect, APPLIED PHYSICS LETTERS 91 (2007) 113904.
[74] T. Simonson, C.L. Brooks, Charge Screening and the Dielectric Constant of Proteins: Insights from Molecular Dynamics, J. Am. Chem. Soc. (1996) 118, 8452-8458.
[75] S. Uno, M. Iio, H. Ozawa, K. Nakazato, Full Three-Dimensional Simulation of Ion-Sensitive Field-Effect Transistor Flatband Voltage Shifts Due to DNA Immobilization and Hybridization, The Japan Society of Applied Physics (2010).
[76] E.C. Sherer, S.J. Bono, Further Quantum Mechanical Evidence that Difluorotoluene Does Not Hydrogen Bond, J. Phys. Chem. B (2001) 105 8445-8451.
[77] F.F. BECKER, X.B. WANG, Separation of human breast cancer cells from blood by differential dielectric affinity, January (1995) Vol. 92 860-864.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔