(100.26.179.251) 您好!臺灣時間:2021/04/12 21:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡玉章
研究生(外文):Yu-Chang Tsai
論文名稱:應用於有線傳送接收機之可適應性等化器與時脈同步電路的設計與實現
論文名稱(外文):Design and Implementation of Adaptive Equalizer and Clock Synchronization Circuits for Wired-Line Transceivers
指導教授:鄭國興鄭國興引用關係
指導教授(外文):Kuo-Hsing Cheng
學位類別:博士
校院名稱:國立中央大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:108
中文關鍵詞:鎖相迴路時脈同步電路類比等化器傳送接收器
外文關鍵詞:Clock Synchronization CircuitsTransceiverPhase-Locked LoopAnalog Equalizer
相關次數:
  • 被引用被引用:2
  • 點閱點閱:179
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在現今高速傳輸系統中,鎖相迴路(Phase-locked loop, PLL)及延遲迴路(Delay-locked loop, DLL)常被用來作為時脈倍頻與解決電路內的時脈歪斜(Skew),在傳送接受器(Transceiver)的傳送端(Transmitter)中,時脈同步電路常被用來提供給序列器(Serializer),使資料可以從並列轉成串列的輸出,而在接收端(Receiver)中,除可以提供給時脈資料回復電路(Clock and data recovery circuit, CDR)所需要的參考時脈以外,其也可以提供給解序列器(Deserializer)所需要的時脈,來使得資料從串列的轉成並列的形式。在太陽能電池供應的電壓下,其電壓為0.5 V,因此低電壓與低功率消耗的積體電路也變的越來越重要。在高速系統中,資料從傳送端傳送出來,並且經由通道來傳送,但通道的損失將造成資料在傳送時遇到符元干擾(Intersymbol interference, ISI)的現象,而使得資料的眼圖關閉,因此在接收端加上等化器(Equalizer)可以用來補償通道的損失,使接收端可以正常的接收資料。

首先本論文提出了一個低抖動(Jitter)的鎖相迴路,並且可應用於10 Gbps高速有線傳送接收機,其可以提供所需的2.5 GHz,8個相位之時脈,此鎖相迴路中的可變延遲元件(Variable delay cell, VDC),可以使用在電壓控制器中(Voltage-controlled oscillator, VCO)去達到較寬的可調頻率範圍,以及較低的電壓控制增益(KV CO)。而此鎖相迴路也加入了自我校準的機制(Self-adjustment circuit, SAC),其可以保護鎖相迴路使其不受製程、電壓與溫度飄移的影響。此鎖相迴路使用了0.13 μm CMOS製程,在2.5 GHz的操作頻率下,其可以達到2.83 ps(rms)的抖動量,並且功率消耗為21 mW,晶片核心面積為0.08 mm^2。

接著本論文針對於低功率消耗的應用設計了一個無電感式的鎖相迴路,其可以應用於太陽能電池供應之0.5 V電壓下,其中提出了一個充放電幫浦(Charge pump, CP),此充放電幫浦可以達到低漏電流與高速的操作。並且也提出了一個低電壓的電壓控制振盪器(Low-voltage-controlled oscillator, LV-VCO),其由四級的延遲元件與一個低電壓分段式電流鏡(Low-voltage segmented current mirror, LV-SCM)所組成,其可以達到低的電壓控制增益,寬操作頻率範圍,以及較佳的線性度。低電壓分段式電流鏡利用控制電晶體的基極端,因此可以產生較多的電流。此鎖相迴路利用標準的90 nm CMOS製程,並且使用正常的VT值元件來實現。此鎖相迴路在2.24 GHz時輸出抖動為2.22 ps (rms),並且在1 MHz的偏移下相位雜訊為−87 dBc/Hz。功率消耗為2.08 mW,晶片面積為0.074 mm^2。

為了解決資料經過通道後所造成的符元干擾,最後本論文也提出了一個類比可適應性的等化器去解決通道所造成的資料損失。此類比等化器利用一個低電壓的零點產生器(Low-voltage zero generators, LVZGs)去產生一個高頻的增益補償,並且不需要使用到被動的電感元件,因此可以節省面積的消耗。除此之外,也使用了頻譜平衡技巧(Spectrum-balancing technique),因此不需要使用到Slicer的電路。在功率偵測器(Power detector)方面,結合了電流操控技巧(Current steering techniques)與預先放大器(Pre-amplifier)電路,因此可以加大偵測的電壓擺幅。此設計的類比等化器可以在2.5 GHz時補償14 dB的通道損失,並且其功率消耗在1.6 V供應電壓下為17.6 mW,輸出之電壓擺幅為560 mV (pk-pk),面積的消耗為0.1 mm^2,輸出之峰對峰值抖動為0.28 UI。

在本論文中所提出之時脈同步電路可以應用於高速之有線傳送接收機內,去提供時脈及相位給各個電路來使用,並且類比等化器可以去補償高速資料在通過通道時所造成的資料損失。
In high-speed transceivers, phase-locked loops (PLLs) and delay-locked loops (DLLs) are used as clock generators to avoid clock skew. In the transmitter, the clock synchronization circuits are used to provide the clock signal to the serializer. Therefore, the data can be transmitted from the parallel data to the serial data. In the receiver, the clock synchronization circuits provide the reference clock signal to the clock and data recovery circuit. In addition, the clock synchronization circuits provide the clock signal to the deserializer. Therefore, the data can be transferred from serial data to parallel data. The solar battery provides the 0.5 V supply voltage. Therefore, low-voltage and low power consumption integrated circuits have become more and more important. In high-speed systems, the data is sent from the transmitter and passes through the channel. The channel loss causes the inter-symbol interference (ISI) when the data passes through the channel. The eye diagram of the data is closed. Therefore, the equalizer can be used to compensate for the channel loss in the receiver so that the receiver can receive the data correctly.

First, a low-jitter PLL is proposed for 10 Gbps high speed wired-line transceiver applications. The PLL provides 2.5 GHz, eight-phase output clock to the transceiver. The new variable delay cell (VDC) for the voltage-controlled oscillator (VCO) achieves a wide-range of output frequencies and a low noise sensitivity with low KVCO. The PLL consists of a self-adjustment circuit (SAC), which protects the PLL from variations in the process, voltage and temperature (PVT). The PLL is implemented in 0.13 μm CMOS technology. The PLL output jitter is 2.83 ps (rms). The total power dissipation is 21 mW at a 2.5 GHz output frequency, and the core area is 0.08 mm^2.

Next, an inductorless PLL is proposed for low-power consumption applications. The PLL is suitable for the solar battery, which provides a 0.5 V supply voltage. A new charge pump (CP) circuit affords a low leakage current and high speed operation. A low-voltage voltage-controlled oscillator (LV-VCO) composed of 4-stage delay cells and a low-voltage segmented current mirror (LV-SCM) achieves a low voltage-controlled oscillator gain (KVCO), a wide tuning range, and good linearity. The LV-SCM generates more current within a small area by switching the body rather than the gate. The PLL is implemented in standard 90 nm CMOS with regular VT (RVT) devices. Its output jitter is 2.22 ps (rms). The phase noise is −87 dBc/Hz at a 1 MHz offset from a 2.24 GHz center frequency. The total power dissipation at a 2.24 GHz output frequency, and with a 0.5 V power supply is 2.08 mW (excluding the buffers). The core area is 0.074 mm^2.

To solve the ISI effect while the data passes through the channel, an equalizer can be added in the receiver. Finally, this dissertation also proposed an analog adaptive equalizer to compensate for the channel loss. This equalizing filter uses low-voltage zero generators (LVZGs) to generate high-frequency gain boosting without inductors. The spectrum-balancing technique eliminates the need for a slicer. The power detector combines current steering techniques and a pre-amplifier circuit to enhance the voltage swing. The equalizer can compensate for the channel loss of 14 dB at 2.5 GHz. This design consumes 17.6 mW (excluding the output buffers) at a 1.6 V supply voltage with an output swing of 560 mV (pk-pk). The occupied area is 0.1 mm^2 (including output buffers), and the output peak-to-peak jitter is 0.28 UI.

In this dissertation, the proposed clock synchronization circuits can be used in high-speed wired-line transceivers. They provide a clock signal and phases to other circuits for correct operation. The analog equalizer compensates for the channel loss when the high-speed data passes through the channel.
摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 High-Speed Wired-Line Transceiver . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Application of High-Speed Wired-Line Transceivers . . . . . . . . . . . . . 5
1.4 Application of Low-Power Clock Synchronization Circuits . . . . . . . . . . 7
1.5 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Background of Transceivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 Overview of the Wired-Line Transceiver . . . . . . . . . . . . . . . . . . . 13
2.1.1 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Transmission Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 PLL-Based Clock Synchronization Circuits . . . . . . . . . . . . . . . . . . 20
2.2.1 Basic Phase-Locked Loop . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 PLL Linear Model Analysis . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Design Considerations of Phase-Locked Loops . . . . . . . . . . . . . . . . 30
2.3.1 Low-Jitter Phase-Locked Loop . . . . . . . . . . . . . . . . . . . . . 30
2.3.2 Low-Power and Inductorless Phase-Locked Loop . . . . . . . . . . 32
2.4 Analog Adaptive Equalizer . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5 Design Considerations of the Inductorless and Low-Power Analog Adaptive
Equalizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3 A Low-Jitter Phase-Locked Loop with Self-Adjustment Technique . . . . . . . . 41
3.1 Architecture of the Proposed Self-Adjustment Phase-Locked Loop . . . . . 41
3.2 Digital Control Current Source and Multi-Band VCO . . . . . . . . . . . . 46
3.2.1 Variable Delay Cell of Multi-Band VCO . . . . . . . . . . . . . . . 46
3.2.2 Digital Control Current Source . . . . . . . . . . . . . . . . . . . . 49
3.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4 A Low-Power and Inductorless Phase-Locked Loop . . . . . . . . . . . . . . . . 57
4.1 Architecture of the Proposed 0.5 V Inductorless Phase-Locked Loop . . . . 57
4.1.1 Charge Pump (CP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1.2 Low-Voltage Voltage-Controlled Oscillator (LV-VCO) . . . . . . . . 62
4.1.3 Frequency Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Experimental Results and Comparison . . . . . . . . . . . . . . . . . . . . 68
5 A Low-Power and Inductorless Adaptive Equalizer . . . . . . . . . . . . . . . . . 81
5.1 System Architecture Design and Analysis . . . . . . . . . . . . . . . . . . . 81
5.1.1 Spectrum Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.1.2 Architecture of the Proposed Adaptive Equalizer . . . . . . . . . . 82
5.1.3 Equalizer Linear Model Analysis . . . . . . . . . . . . . . . . . . . 83
5.2 Implementation of the Equalizer . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2.1 Equalizing Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2.2 All-Pass Filter and Low-Pass Filter . . . . . . . . . . . . . . . . . . 88
5.2.3 Power Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.3 Experimental and Comparison Results . . . . . . . . . . . . . . . . . . . . 90
6 Conclusions and Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
[1] J. Zerbe, B. Daly, L. Luo, W. Stonecypher, W. Dettloff, J. C. Eble, T. Stone, J. Ren, B. Leibowitz, M. Bucher, P. Satarzadeh, Q. Lin Y. Lu, and R. Kollipara, “A 5 Gb/s link with matched source synchronous and common-mode clocking techniques,”IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 974–985, Apr. 2011.
[2] T. Ebuchi, Y. Komatsu, M. Miura, T. Chiba, T. Iwata, S. Dosho, and T. Yoshikawa,“An ultra-wide range bi-directional transceiver with adaptive power control using background replica VCO gain calibration,” IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 986–991, Apr. 2011.
[3] F. O’Mahony, J. E. Jaussi, J. Kennedy, G. Balamurugan, M. Mansuri, C. Roberts, S. Shekhar, R. Mooney, and B. Casper, “A 47 × 10 Gb/s 1.4 mW/Gb/s parallel interface in 45 nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2828–2837, Dec. 2010.
[4] K. Fukuda, H. Yamashita, G. Ono, R. Nemoto, E. Suzuki, N. Masuda, T. Takemoto, F. Yuki, and T. Saito, “A 12.3-mW 12.5-Gb/s complete transceiver in 65-nm CMOS process,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2838–2849, Dec. 2010.
[5] R. Reutemann, M. Ruegg, F. Keyser, J. Bergkvist, D. Dreps, T. Toifl, and M. Schmatz, “A 4.5 mW/Gb/s 6.4 Gb/s 22+1-lane source synchronous receiver core with optional cleanup PLL in 65 nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2850–2860, Dec. 2010.
[6] L. Li and M. M. Green, “Power optimization of an 11.75-Gb/s combined decision feedback equalizer and clock data recovery circuit in 0.18-μm CMOS,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 3, pp. 441–450, Mar. 2011.
[7] S. Song and V. Stojanovi’c, “A 6.25 Gb/s voltage-time conversion based fractionally spaced linear receiver equalizer for mesochronous high-speed links,” IEEE J. Solid-State Circuits, vol. 46, no. 5, pp. 1183–1197, May 2011.
[8] Y.-M. Ying and S.-I. Liu, “A 20 Gb/s digitally adaptive equalizer/DFE with blind sampling,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2011, pp. 444–446.
[9] Y.-C. Huang and S.-I. Liu, “A 6Gb/s receiver with 32.7 dB adaptive DFE-IIR equalization,”in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2011, pp. 356–358.
[10] H.-J. Lee, A. M. Kern, S. Hyvonen, and I. A. Young, “A scalable sub-1.2 mW 300 MHz-to-1.5 GHz host-clock PLL for system-on-chip in 32 nm CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2011, pp. 96–97.
[11] International Technology Roadmap for Semiconductors. 2006 [On-line]. Available: http://public.itrs.net/
[12] N. J. Guilar, T. J. Kleeburg, A. Chen, D. R. Yankelevich, and R. Amirtharajah, “Integrated solar energy harvesting and storage,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 17, no. 5, pp. 627–637, May 2009.
[13] M. Kurisu, M. Kaneko, T. Suzaki, A. Tanabe, M. Togo, A. Furukawa, T. Tamura, K. Nakajima, and K. Yoshida, “2.8-Gb/s 176-mW byte-interleaved and 3.0-Gb/s 118-mW bit-interleaved 8:1 multiplexers with a 0.15-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 31, no. 12, pp. 2024–2029, Dec. 1996.
[14] W.-Z. Chen and M.-C. Weng, “A 2.5 Gbps serial-link data transceiver in a 0.35 μm digital CMOS technology,” in Proc. IEEE Asia-Pacific Conf. on Advanced System Integrated Circuits (AP-ASIC), Aug. 2004, pp. 232–235.
[15] D. Kehrer, H.-D. Wohlmuth, H. Knapp, M. Wurzer, and A. L. Scholtz, “40-Gb/s 2:1 multiplexer and 1:2 demultiplexer in 120-nm standard CMOS,” IEEE J. Solid-State Circuits, vol. 38, no. 11, pp. 1830–1837, Nov. 2003.
[16] B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001.
[17] P. Heydari, “Analysis of the PLL jitter due to power/ground and substrate noise,”IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 12, pp. 2404–2416, Dec. 2004.
[18] J. G. Maneatis, “Low-jitter process-independent DLL and PLL based on self-biased techniques,” IEEE J. Solid-State Circuits, vol. 31, no. 11, pp. 1723–1732, Nov. 1996.
[19] M. Horowitz, A. Chan, J. Cobrunson, J. Gasbarro, T. Lee, W. Leung, W. Richardson, T. Thrush, and Y. Fujii, “PLL design for a 500MB/s interface,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 1993, pp. 160–161.
[20] J. Lee and B. Kim, “A low-noise fast-lock phase-locked loop with adaptive bandwidth control,” IEEE J. Solid-State Circuits, vol. 35, no. 8, pp. 1137–1145, Aug. 2000.
[21] J. J. Kim, S.-B. Lee, T.-S. Jung, C.-H. Kin, S.-I. Cho, and B. Kim, “A low-jitter mixed-mode DLL for high-speed DRAM applications,” IEEE J. Solid-State Circuits, vol. 35, no. 10, pp. 1430–1436, Oct. 2000.
[22] R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1-GHz and 2.8-GHz CMOS injection-locked ring oscillator prescalers,” in Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2001, pp. 47–50.
[23] Y. A. Eken and J. P. Uyemura, “A 5.9-GHz voltage-controlled ring oscillator in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 230–233, Jan. 2004.
[24] A. Aktas and M. Ismail, “CMOS PLL calibration techniques,” IEEE Circuits and Devices Magazine, vol. 20, no. 5, pp. 6–11, Sept. 2004.
[25] T.-H. Lin and W. J. Kaiser, “A 900-MHz 2.5-mA CMOS frequency synthesizer with an automatic SC tuning loop,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 424–431, Mar. 2001.
[26] J. Y. Kim, C.-W. Yao, and A. N. Willson, Jr., “A programmable 25-MHz to 6-GHz K/L frequency multiplier with digital KV CO compensation,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 5, pp. 865–876, May 2009.
[27] P.-Y. Deng and J.-F. Kiang, “A 5-GHz CMOS frequency synthesizer with an injection-locked frequency divider and differential switched capacitors,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 2, pp. 320–326, Feb. 2009.
[28] S. A. Yu and P. Kinget, “A 0.65V 2.5GHz fractional-N frequency synthesizer in 90nm CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2007, pp. 304–306.
[29] H.-H. Hsieh, C.-T. Lu, and L.-H. Lu, “A 0.5-V 1.9-GHz low-power phase-locked loop in 0.18-μm CMOS,” in Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2007, pp. 164–165.
[30] C.-T. Lu, H.-H. Hsieh, and L.-H. Lu, “A low-power quadrature VCO and its application to a 0.6-V 2.4-GHz PLL,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 4, pp. 793–802, Apr. 2010.
[31] A. Matsumoto, S. Sakiyama, Y. Tokunaga, T. Morie, and S. Dosho, “A design method and developments of a low-power and high-resolution multiphase generation system,” IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 831–843, Apr. 2008.
[32] T. Toifl, C. Menolfi, P. Buchmann, M. Kossel, T. Morf, R. Reutemann, M. Ruegg, M. L. Schmatz, and J. Weiss , “A 0.94-ps-RMS-jitter 0.016-mm2 2.5-GHz multiphase generator PLL with 360◦ digitally programmable phase shifter for 10-Gb/s Serial Links,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2700–2712, Dec. 2005.
[33] K. Ishida, K. Kanda, A. Tamtrakarn, H. Kawaguchi, and T. Sakurai, “Managing leakage in charge-based analog circuits with low VTH transistors by analog T-switch (AT-switch) and super cut-off CMOS,” in Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2005, pp. 122–125.
[34] J.-B. Park, S.-M. Yoo, S.-W. Kim, Y.-J. Cho, and S.-H. Lee, “A 10-b 150-MSample/s 1.8-V 123-mW CMOS A/D converter with 400-MHz input bandwidth,” IEEE J. Solid-State Circuits, vol. 39, no. 8, pp. 1335–1337, Aug. 2004.
[35] S. Chatterjee, Y. Tsividis, and P. R. Kinget, “0.5-V analog circuit techniques and their application in OTA and filter design,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2373–2387, Dec. 2005.
[36] Y.-L Lo, W.-B. Yang, T.-S. Chao, and K.-H. Cheng, “Designing an ultralow-voltage phase-locked loop using a bulk-driven technique,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 5, pp. 339–343, May 2009.
[37] J. N. Babanezhad, “A 3.3-V analog adaptive line-equalizer for fast Ethernet data communication,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), May 1998, pp. 343–346.
[38] J.-S. Choi, M.-S. Hwang, and D.-K. Jeong, “A 0.18-μm CMOS 3.5-Gb/s continuoustime adaptive cable equalizer using enhanced low-frequency gain control method,”IEEE J. Solid-State Circuits, vol. 39, no. 3, pp. 419–425, Mar. 2004.
[39] G. P. Hartman, “Continuous-time adaptive-analog coaxial cable equalizer in 0.5 μm CMOS,” M.S. thesis, Toronto Univ., 1997.
[40] G. E. Zhang and M. M. Green, “A 10-Gb/s BiCMOS adaptive cable equalizer,” IEEE J. Solid-State Circuits, vol. 40, no. 11, pp. 2132–2140, Nov. 2005.
[41] S. Gondi and B. Razavi, “Equalization and clock and data recovery techniques for 10-Gb/s CMOS serial-link receivers,” IEEE J. Solid-State Circuits, vol. 42, no. 9, pp. 1999–2011, Sep. 2007.
[42] R. Sun, J. Park, F. O’Mahony, and C. P. Yue, “A tunable passive filter for low-power high-speed equalizers,” in Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2006, pp. 198–199.
[43] J. Lee, “A 20-Gb/s adaptive equalizer in 0.13-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 41, no. 9, pp. 2058–2066, Sep. 2006.
[44] H.-Y. Joo and L.-S. Kim, “A data-pattern-tolerant adaptive equalizer using the spectrum balancing method,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 3,
pp. 228–232, Mar. 2010.
[45] S. Ibrahim and B. Razavi, “Low-power CMOS equalizer design for 20-Gb/s systems,”IEEE J. Solid-State Circuits, vol. 46, no. 6, pp. 1321–1336, Jun. 2011.
[46] C.-F. Liao and S.-I. Liu, “A 40-Gb/s CMOS serial-link receiver with adaptive equalization and clock/data recovery,” IEEE J. Solid-State Circuits, vol. 43, no. 11, pp. 2492–2502, Nov. 2008.
[47] Y. Tomita, M. Kibune, J. Ogawa, W. W. Walker, H. Tamura, and T. Kuroda, “A 10-Gb/s receiver with series equalizer and on-chip ISI monitor in 0.11-μm CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 4, pp. 986–993, Apr. 2005.
[48] J.-H. Lu, K.-H. Chen, and S.-I. Liu, “A 10-Gb/s inductorless CMOS analog equalizer with an interleaved active feedback topology,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 2, pp. 97–101, Feb. 2009.
[49] K.-H. Cheng, Y.-C. Tsai, C.-N. J. Liu, K.-W. Hong, and C.-C. Kuo, “A low jitter self-calibration PLL for 10-Gbps SoC transmission links application,” IEICE Trans. Electron, vol. E92-C, no. 7, pp. 964–972, Jul. 2009.
[50] T.-H. Lin and Y.-J. Lai, “An agile VCO frequency calibration technique for a 10-GHz CMOS PLL,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 340–349, Feb. 2007.
[51] X. Lai, Y. Wan, and J. Roychowdhury, “Fast PLL simulation using nonlinear VCO macromodels for accurate prediction of jitter and cycle-slipping due to loop nonidealities and supply noise,” in Proc. IEEE Asia and South Pacific Design Automation Conf. (ASP-DAC), Jan. 2005, pp. 18–21.
[52] P. K. Hanumolu, M. Brownlee, K. Mayaram, and U.-K. Moon, “Analysis of chargepump phase-locked loops,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 9, pp. 1665–1674, Sept. 2004.
[53] T. Miyazaki, M. Hashimoto, and H. Onodera, “A performance prediction of clock generation PLLs: a ring oscillator based PLL and LC oscillator based PLL,” IEICE Trans. Electron., vol. E88-C, no. 3, pp. 437–444, Mar. 2005.
[54] W. B. Wilson, U.-K. Moon, K. R. Lakshmikumar, and L. Dai, “A CMOS selfcalibrating frequency synthesizer,” IEEE J. Solid-State Circuits, vol. 35, no. 10, pp. 1437–1444, Oct. 2000.
[55] Y. Akamine, M. Kawabe, K. Hori, T. Okazaki, M. Kasahara, and S. Tanaka, “ΔΣPLL transmitter with a loop-bandwidth calibration system,” IEEE J. Solid-State Circuits, vol. 43, no. 2, pp. 497–506, Feb. 2008.
[56] A. M. Fahim, “A compact, low-power low-jitter digital PLL,” in Proc. IEEE European Solid-State Circuits Conf. (ESSCIRC), Sept. 2003, pp. 101–104.
[57] A. Arakali, S. Gondi, and P. K. Hanumolu, “Low-power supply-regulation techniques for ring oscillators in phase-locked loops using a split-tuned architecture,” IEEE J. Solid-State Circuit, vol. 44, no. 8, pp. 2169–2181, Aug. 2009.
[58] Z. Cao, Y. Li, and S. Yan, “A 0.4 ps-RMS-jitter 1–3 GHz ring-oscillator PLL using phase-noise preamplification,” IEEE J. Solid-State Circuit, vol. 43, no. 9, pp. 2079–2089, Sept. 2008.
[59] M. Brownlee, P. K. Hanumolu, K. Mayaram, and U.-K. Moon, “A 0.5-GHz to 2.5-GHz PLL with fully differential supply regulated tuning,” IEEE J. Solid-State Circuit, vol. 41, no. 12, pp. 2720–2728, Dec. 2006.
[60] A. Elshazly, R. Inti, W. Yin, B. Young, and P. K. Hanumolu, “A 0.4-to-3GHz digital PLL with supply-noise cancellation using deterministic background calibration,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2011, pp. 92–94.
[61] J. B. Kuo and S.-C. Lin, Low-Voltage SOI CMOS VLSI Devices and Circuits, John Wiley and Sons, Inc, 2001.
[62] K.-H. Cheng, Y.-C. Tsai, Y.-L. Lo, and J.-S. Huang, “A 0.5 V 0.4-2.24 GHz inductorless phase-locked loop in a system-on-chip,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 5, pp.849–859, May 2011.
[63] M. G. Johnson and E. L. Hudson, “A variable delay line PLL for CPU-coprocessor synchronization,” IEEE J. Solid-State Circuits, vol. 23, no. 5, pp. 1218–1223, May 1988.
[64] V. Von Kaenel, D. Aebischer, C. Piguet, and E. Dijkstra, “A 320 MHz, 1.5 mW @ 1.35 V CMOS PLL for microprocessor clock generation,” IEEE J. Solid-State Circuits, vol. 31, no. 11, pp. 1715–1722, Nov. 1996.
[65] A. Waizman, “A delay line loop for frequency synthesis of de-skewed clock,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 1994, pp. 298–299.
[66] K. W. Ouyang and M. Marmet, “Fast switching charge pump,” U.S. Patent 4 792 705, Mar. 14, 1986.
[67] P. Raha, “A 0.6–1.2V low-power configurable PLL architecture for 6GHz–300MHz applications in a 90nm CMOS process,” in Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2004, pp. 232–235.
[68] Y. Tsividis, Operation and Modeling of the MOS Transistor, 2nd ed. New York: McGraw-Hill, 1999, pp. 189–191.
[69] M. J. Deen, M. H. Kazemeini, and S. Naseh, “Performance characteristics of an ultra-low power VCO,” in Proc. IEEE Int. Symp. on Circuits and Systems (ISCAS), May 2003, pp. 697–700.
[70] C.-Y. Wu and Y.-Y. Liow, “New current-mode wave-pipelined architectures for high-speed analog-to-digital converters,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 1, pp. 25–37, Jan. 2004.
[71] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, 2nd ed. New York, 2000.
[72] HSPICE User Guide: Simulation and Analysis, Ver. C-2009.03, Mar. 2009.
[73] J. N. Soares, Jr. and W. A. M. V. Noije, “A 1.6-GHz dual modulus prescaler using the extended true-single-phase-clock CMOS circuit technique (TSPC),” IEEE J. Solid-State Circuits, vol. 34, no. 1, pp. 97–102, Jan. 1999.
[74] J. Yuan and C. Svensson, “High-speed CMOS circuit technique,” IEEE J. Solid-State Circuits, vol. 24, no. 1, pp. 62–70, Feb. 1989.
[75] D. Park and S. Cho, “Desing techniques for a low-voltage VCO with wide tuning range and low sensitivity to environmental variations,” IEEE J. Solid-State Circuits, vol. 57, no. 4, pp. 767–774, Apr. 2009.
[76] C.-Y. Yang, C.-H. Chang, J.-M. Lin, and J.-H. Weng, “A 0.6 V 10 GHz CMOS VCO using a negative-Gm back-gate tuned technique,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 3, pp. 163–165, Mar. 2011.
[77] C.-Y. Yang, C.-H. Chang, and J.-H. Weng, “A quadrature CMOS VCO using a distributed MIM poly-phase network,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 2, pp. 107–109, Feb. 2011.
[78] J. Kim, J.-O. Plouchart, N. Zamdmer, R. Trzcinski, K. Wu, B. J. Gross, and M. Kim, “A 44GHz differentially tuned VCO with 4GHz tuning range in 0.12μm SOI CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2005, pp. 416–417.
[79] T.Wu, K. Mayaram, and U.-K. Moon, “An on-chip calibration technique for reducing supply voltage sensitivity in ring oscillators,” IEEE J. Solid-State Circuits, vol. 42, no. 4, pp. 775–783, Apr. 2007.
[80] S.-Y. Kao and S.-I. Liu, “A digitally-calibrated phase-locked loop with supply sensitivity suppression,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 19, no. 4, pp. 592–602, Apr. 2011.
[81] C.-Y. Yang, C.-H. Chang, J.-H. Weng, and H.-M. Wu, “A 0.5/0.8-V 9-GHz frequency synthesizer with doubling generation in 0.13-μm CMOS,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, no. 2, pp. 65–69, Feb. 2011.
[82] K.-H. Cheng, Y.-C. Tsai, Y.-H. Wu, and Y.-F. Lin, “A 5Gb/s inductorless CMOS adaptive equalizer for PCI Express Generation II applications,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 5, pp. 324–328, May 2010.
[83] B. Razavi, Design of Integrated Circuits for Optical Communications, New York: McGraw-Hill, 2002.
[84] D. A. Johns and K. Martin, Analog Integrated Circuit Design, New York: Wiley, 1997.
[85] S. A. Ibrahim and B. Razavi, “A 20Gb/s 40mW equalizer in 90nm CMOS technology,”in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2010, pp. 170–172.
[86] Q. Zhang, P. Feng, Z. Geng, X. Yan, and N. Wu, “A 2.4-GHz energy-efficient transmitter for wireless medical applications,” IEEE Trans. Biomed. Circuits Syst., vol. 5, no. 1, pp. 39–47, Feb. 2011.
[87] T. Ebuchi, Y. Komatsu, T. Okamoto, Y. Arima, Y. Yamada, K. Sogawa, K. Okamoto, T. Morie, T. Hirata, S. Dosho, and T. Yoshikawa, “A 125–1250 MHz processindependent adaptive bandwidth spread spectrum clock generator with digital controlled self-calibration,” IEEE J. Solid-State Circuits, vol. 44, no. 3, pp. 763–774, Mar. 2009.
[88] P.-Y. Wang, J.-H. C. Zhan, H.-H. Chang, and H.-M. S. Chang, “A digital intensive fractional-N PLL and all-digital self-calibration schemes,” IEEE J. Solid-State Circuits, vol. 44, no. 8, pp. 2182–2192, Aug. 2009.
[89] H. Wang and J. Lee, “A 21-Gb/s 87-mW transceiver with FFE/DFE/Analog equalizer in 65-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 909–920, Apr. 2010.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔