(3.235.41.241) 您好!臺灣時間:2021/04/11 21:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:阮俊捷
研究生(外文):Chun-Chieh Juan
論文名稱:使用等階集合法與影像不均勻度修正於手指靜脈血管影像切割
論文名稱(外文):Segmentation of Finger Vein Image using Level Set Method with Image Inhomogeneity Correction
指導教授:李柏磊
指導教授(外文):Po-Lei Lee
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:102
中文關鍵詞:影像不均勻度修正手指靜脈血管影像切割等階集合法
外文關鍵詞:Image Inhomogeneity CorrectionImage SegmentationFinger VeinsLevel Set Method
相關次數:
  • 被引用被引用:1
  • 點閱點閱:267
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
在本文中提出一個新的手指靜脈血管影像特徵切割方法。手指靜脈血管紋路可做為生物辨識科技,因血管在體內不易改變及偽造,利用近紅外光照射手指產生的靜脈血管影像不僅包含幾何血管紋路,更含有不規則陰影及雜訊,由於在手指關節處肌肉群較少及光波動強度差異,會造成擷取時光線更易穿透而區域性過亮,所以我們必頇使用在亮度不均勻及雜訊干擾下仍有高穩定性的演算法。由於等階集合法具有強力的物件偵測及拓樸能力,而在傳統手指靜脈血管影像切割方法中,大多只使用二維濾波器處理,並無人研究使用等階集合法對血管影像做切割,因血管影像具亮度不均、低對比且高模糊度的複雜特性,容易產生錯誤切割結果,如使用以能量概念為基礎的Chan-Vese 模型時,亦因血管影像亮度不均,只切割出過亮的指節區域,所以本研究中探討如何使用並改良等階集合法,在疊代過程中增加背景影像不均勻修正演算,去除不均勻場以完成靜脈血管紋路的取得。從實驗結果中,我們可以有效的去除血管影像中亮度產生的不均勻場,並可同時得到不錯的修正影像及切割結果。
In this thesis, we propose a new approach to segment finger vein image. Finger vein pattern, embedded inside subjects‟ fingers, is difficult to be faked due to its nature of inter-individual characterization. The segmentation of finger vein pattern has drawn attention and has been used as a new biometric technology for personal identification. However, the inhomogeneous lighting or bone structure shadowing in the acquisition of finger vein image usually results in inhomogeneous shadowing patterns which can fail the image segmentation of level-set methods. Therefore, a reliable and robustness method is needed for image segmentation, even under inhomogeneous background condition. In contrast to traditional 2D filtering techniques, the proposed study adopted energy-based level set method to segment finger vein patterns, owing to the advantages of level set method in object detection and topology processing. By remodeling the Chan-Vese model with a background correction term, the inhomogeneous image background and finger vein pattern can be separated after iterative minimization of Chan-Vese energy function. Our experimental results showed that the modified Chan-Vese Level Set method is an efficient tool for image segmentation in bias-field contaminated image.
摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 研究方法 5
1.4 論文架構 6
第二章 方法與研究 7
2.1手指靜脈血管影像原理 7
2.1.1 手指靜脈血管識別技術 7
2.1.2 紅外光對於靜脈血管的特性 8
2.1.2 設置擷取影像裝置方法 11
2.2 影像切割 12
2.3 主動輪廓模型 14
2.3.1 概述 14
2.3.2 Snake模型及其改良 14
2.3.3 等階集合法及其改良 16
第三章 等階集合法與亮度不均勻修正 21
3.1 等階集合數值表示 21
3.2 Chan-Vese模型 24
3.2.1 能量概念 24
3.2.2 等階集合法求解 26
3.3 影像不均勻度修正(Image Inhomogeneity Correction) 30
3.3.1 影像不均勻的影像模型 30
3.3.2 設計能量形式 31
3.3.3 等階集合表示 34
第四章 結果與討論 38
4.1 參數特性設定 38
4.2 樣本影像切割結果 39
4.2.1 樣本影像1 39
4.2.2 樣本影像1變化:模糊 42
4.2.3 樣本影像1變化:更模糊 45
4.2.4 樣本影像2 48
4.2.5 樣本影像2-改變初始輪廓1 51
4.2.6 樣本影像2-改變初始輪廓2 53
4.3 實際影像切割結果 55
4.3.1 實際影像-米粒 55
4.3.2 實際影像-米粒-改變初始輪廓 58
4.3.3 實際影像-米粒-改變σ 60
4.3.4 實際影像-日冕熙德雕像 62
4.4手指靜脈血管影像切割結果 65
4.4.1 血管影像1-保留小血管 65
4.4.2 血管影像1-連接大血管 68
4.4.3 血管影像2 70
4.4.4 血管影像3-指紋 73
4.4.5 血管影像3-指紋前處理 76
4.4.6 血管影像4 79
4.5有無亮度不均勻修正的比較 82
第五章 結論與未來展望 84
5.1 結論 84
5.2未來展望 85
References 86
[1] J. A. Sethian, Level Set Methods, Cambridge University Press, California, 1996.
[2] S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer-Verlag, Los Angeles, 2003.
[3] A. R. Mansouri, “Region tracking via level set PDEs without motion computation,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.24, pp.947-961, July 2002.
[4] H. Haxthausen, “Infrared photography of subcutaneous veins,” British Journal of Dermatology, vol.45, pp.506-511, 1933.
[5] Y. Ding, D. Zhuang, and K. Wang, “The study of hand vein recognition method.” Proceedings of the IEEE International Conference on Mechatronics & Automation, pp.2106-2110, 2005.
[6] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: active contour models,” Int’l J. Comp. Vis., vol. 1, pp.321–331, 1987.
[7] L. Cohen and I. Cohen, “Finite-element methods for active contour models and balloons for 2-D and 3-D images,” IEEE Trans. Patt. Anal. Mach. Intell., vol.15, pp.1131–1147, 1993.
[8] R. Malladi, J. A. Sethian, and B. C. Vemuri, “Shape modeling with front propagation: a level set approach,” IEEE Trans. Patt. Anal. Mach. Intell., vol. 17, pp.158–175, 1995.
[9] T. Chan and L. Vese, “Active contours without edges,” IEEE Trans. Imag. Proc., vol. 10, pp.266–277, 2001.
[10] V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active contours,” Int’l J. Comp. Vis., vol.22, pp.61–79, 1997.
[11] C. Xu and J. Prince, “Snakes, shapes, and gradient vector flow,” IEEE Trans. Imag. Proc., vol.7, pp.359–369, 1998.
[12] C. Li, C. Xu, C. Gui, and M. D. Fox, “Level set evolution without re-initialization: A new variational formulation,” In IEEE Conference on Computer Vision and Pattern Recognotion (CVPR), vol. 1, pp.430–436, 2005.
[13] A. Tsai, A. Yezzi, and A. S. Willsky, “Curve evolution implementation of the mumford-shah functional for image segmentation, denoising, interpolation, and magnification,” IEEE Trans. Imag. Proc., vol.10, pp.1169–1186, 2001.
[14] N. Paragios and R. Deriche, “Geodesic active regions and level set methods for supervised texture segmentation,” Int’l J. Comp. Vis., vol.46, pp.223–247, 2002.
[15] L. Vese and T. Chan, “A multiphase level set framework for image segmentation using the mumford and shah model,” Int’l J. Comp. Vis., vol. 50, pp.271–293, 2002.
[16] Z. Hou, “A review on MR image intensity inhomogeneity correction,” Int. J. Biomed. Imag., vol.2006, pp.1–11, 2006.
[17] U. Vovk, F. Pernus, and B. Likar, “A review of methods for correction of intensity inhomogeneity in MRI,” IEEE Trans. Med. Imag. 26(3), pp.405–421, 2007.
[18] E. Lewis and N. Fox, “Correction of differential intensity inhomogeneity in longitudinal MR images,” Neuro. Image, 23(3), pp.75–83, 2004.
[19] B. H. Brinkmann, A. Manduca, and R. A. Robb, “Optimized homomorphic unsharp masking for MR grayscale inhomogeneity correction,” IEEE Trans. Med. Imag., 17(2), pp.161–171, Apr. 1998.
[20] J. Sled, A. Zijdenbos, and A. Evans, “A nonparametric method for automatic correction of intensity nonuniformity in MRI data,” IEEE Trans. Med. Imag., 17(1), pp.87–97, 1998.
[21] D. W. Shattuck, S. R. Sandor-Leahy, K. A. Schaper, D. A. Rottenberg, and R. M. Leahy, “Magnetic resonance image tissue classification using a partial volume model,” Neuroimage, vol.13, pp.856–876, 2001.
[22] B. Dawant, A. Zijdenbos, and R. Margolin, “Correction of intensity variations in MR images for computer-aided tissues classification,” IEEE Trans. Med. Imag., 12(4), pp.770–781, 1993.
[23] C. Meyer, P. Bland, and J. Pipe, “Retrospective correction of intensity inhomogeneities in MRI,” IEEE Trans. Med. Imag., 14(1), pp.36-41, 1995.
[24] P. Vemuri, E. G. Kholmovski, D. L. Parker, and B. E. Chapman, “Coil sensitivity estimation for optimal SNR reconstruction and intensity inhomogeneity correction in phased array MR imaging,” Inf. Process. Med. Imag.: 19th Int. Conf. (IPMI 2005), Glenwood Springs, CO, 2005.
[25] W. Wells, E. Grimson, R. Kikinis, and F. Jolesz, “Adaptive segmentation of MRI data,” IEEE Trans. Med. Imag., 15(4), pp.429–442, 1996.
[26] K. Leemput, F. Maes, D. Vandermeulen, and P. Suetens “Automated model-based bias field correction of MR images of the brain,” IEEE Trans. Med. Imag., 18(10), pp.885–896, 1999.
[27] M. Styner, C. Brechbuhler, G. Szekely, and G. Gerig “Parametric estimate of intensity inhomogeneities applied to MRI,” IEEE Trans. Med. Imag., 19(3), pp.153–165, 2000.
[28] R. Guillemaud and M. Brady “Estimating the bias field of MR images,” IEEE Trans. Med. Imag., vol.16, pp.238–251, 1997.
[29] A. H. Andersen, Z. Zhang, M. J. Avison, and D. M. Gash, “Automated segmentation of multispectral brain MR images,” J. Neurosci. Meth., vol.122, pp.13–23, 2002.
[30] D. Pham and J. Prince, “Adaptive fuzzy segmentation of magnetic resonance images,” IEEE Trans. Med. Imag., 18(9), pp.737–752, 1999.
[31] C. Li, R. Huang, Z. Ding, C. Gatenby, D. Metaxas, and J. Gore, “A variational level set approach to segmentation and bias correction of medical images with intensity inhomogeneity,” MICCAI., vol. LNCS 5242, pp.1083-1091, 2008.
[32] C. Li, C. Xu, C. Gui, and M.D. Fox, “Level set evolution without re-initialization: A new variational formulation,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol.1, pp.430–436, 2005.
[33] C. Li, C. Kao, J. Gore, and Z. Ding, “Implicit active contours driven by local binary fitting energy,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.1-7, 2007.
[34] H. Knutsson and C. F. Westin, “Normalized and Differential Convolution: Methods for Interpolation and Filtering of Incomplete and Uncertain data,” CVPR., pp.515-523, 1993.
[35] X. Li and S. Guo, ”The Fourth Biometric - Vein recognition,” Pattern Recognition Techniques, Technology and Applications, pp.537-546, 2008.
[36] L. Wang and G. Leedham, “Near- and Far-Infrared Imaging for Vein Pattern Biometrics,” IEEE International Conference on Video and Signal Based Surveillance (AVSS’06), 2006.
[37] C. Lin and K. Fan, “Biometric Verification Using Thermal Images of Palm-Dorsa Vein Patterns,” IEEE Trans. Circuits Syst. Video Techn., 14(2), pp.199-213, 2004.
[38] Li Xiaoxia, “Numerical Analysis and Experimental Research on Laser Induced Thermal Effect in Bio-tissues,” Tianjin University, Ph.D Dissertation, 2004.
[39]S. Zhao, Y. Wang, and Y. Wang, “Extracting Hand Vein Patterns from Low-Quality Images: A New Biometric technique Using Low-Cost Devices,” IEEE, 4th International Conference on Image and Graphics, 2007
[40] Sergio Fantini’s Group, ‘Near-infrared spectroscopy for the study of biological tissue,” Department of Biomedical Engineering, Tufts University, 1998, Available from: http://omlc.ogi.edu/spectra/hemoglobin/summary.html
[41]Valery V. Tuchin, Handbook of optical biomedical diagnostic, Saratov State University, ch7, p425, 2002.
[42] J. Hashimoto, “Finger Vein Authentication Technology and its Future,” VLSI Circuits, 2006. Digest of Technical Papers. 2006 Symposium on, pp.5-8, 2006.
[43]鍾豐橋, “人體手足末端血管紅外線影像擷取與量化分析系統之建立,”南台科技大學, 碩士論文, 2006..
[44] D. J. Williams and M. Shah, “A fast algorithm for active contours and curvature estimation,” CVGIP: Image Understanding, vol.55, no.1, pp.14-26, 1992.
[45] K.-M. Lam and H. Yan, “Fast greedy algorithm for active contours,” Electronics Lett., vol.30, no.1, pp. 21-23, 1994.
[46] K.-M. Lam and H. Yan, “Locating head boundary by snakes,” Proc. of Int. Symp. Speech, Image Processing and Neural Networks, vol.1, pp.17-20, 1994.
[47] A. R. Mirhosseini and H. Yan, “An optimally fast greedy algorithm for active contours,” Proc. of IEEE Int. Symp. Circuits and Systems, vol.2, pp.1189-1192, 1997.
[48] L. D., Cohen, "On active contour models and balloons," CVGIP: Image Understand, vol.53, pp.211-218, 1991.
[49] S. Osher and J. A. Sethian, “Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations,” J. Comp. Physics, vol.79, pp.12-49, 1988.
[50] G. Sapiro and A. Tannenbaum, “Affine invariant scale-space,” Int. J. Comput. Vision, vol.11, pp.25-44, 1993.
[51] J. Deng and H. T. Tsui, “A fast level set method for segmentation of low contrast noisy biomedical images,” Pattern Recognition Lett., vol.23, no.1-3, pp.161-169, 2002.
[52] F. Precioso and M. Barlaud, “B-spline active contour with handling of topology changes for fast video segmentation,” EURASIP Journal on Applied Signal Processing, vol.6, pp.555-560, 2002.
[53] R. Goldenberg, R. Kimmel, E. Rivlin, and M. Rudzsky, " Fast Geodesic Active Contours. IEEE Trans. on Pattern Analysis and Machine Intelligence," vol.10, pp.1467-1475, 2001.
[54] D. Mumford and J. Shah. "Optimal approximation by piecewise smooth functions and associated variational problems," Communications on Pure and Appl. Math., vol.42, pp.577-685, 1989.
[55] L. Vese, "Multiphase object detection and image segmentation," Geometric Level set Methods in Imaging, Vision and Graphics, pp.175-194, 2003.
[56] J. Piovano, M. Rousson, and T. Papadopoulo, "Efficient segmentation of piecewise smooth images," Scale Space and Variational Methods in Computer vision(SSVM 2007), pp. 709-720, 2007.
[57] H.-K. Zhao, T. Chan, B. Merriman, and S. Osher, “A variational level set approach to multiphase motion,” J. Comput. Phys., vol.127, pp.179–195, 1996.
[58] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, 1992.
[59] L. C. Evans, Partial Differential Equations, American Mathematical Society, 2010.
[60] C. Yu et al., “A research on extracting low quality human finger vein pattern characteristics,” International Conference on Bioinformatics and Biomedical Engineering, pp.1876–1879, 2008.
[61] Z. Lian, Z. Rui, C. Yu, “Study on the Identity Authentication System on Finger Vein,” International Conference on Bioinformatics and Biomedical Engineering, pp.1905-1907, 2008.
[62] M. Kono, H. Ueki, and S. Umemura, "Near-Infrared Finger Vein Patterns for Personal Identification," Appl. Opt., vol.41, pp.7429-7436, 2002.
[63] D. Hejtmankova, R. Dvořak, M. Drahansky, and F. Orsag, “A New Method of Finger Veins Detection,” International Journal of Bio-Science and Bio-Technology, vol.1, no.1, pp.11-15, Dec. 2009.
[64] N. Miura, A. Nagasaka, and T. Miyatake, "Feature Extraction of finger-vein patterns based on repeated line tracking and its Application to Personal Identification," Machine Vision and Applications, vol.15, no.4, pp.194-203, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔