跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/11 23:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張承鈞
研究生(外文):Cheng-chun Chang
論文名稱:位移算子其有限維壓縮算子的反矩陣
論文名稱(外文):The Inverses of Finite-dimensional Compressions of the Shift
指導教授:高華隆
指導教授(外文):Hwa-long Gau
學位類別:碩士
校院名稱:國立中央大學
系所名稱:數學研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:27
中文關鍵詞:矩陣數值域缺陷指數
外文關鍵詞:NormNumerical rangeDefect indexEigenvalue
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
論文名稱:位移算子其有限維壓縮算子的反矩陣
頁數:27 頁
校所組別:國立中央大學數學所甲組
研究生:張承鈞       指導教授:高華隆
論文提要內容:
令 A 為一個 n 階矩陣,其缺陷指數 d_A 為 rank (I_n − A∗A)。
本論文探討關於「缺陷指數為 1 的矩陣」其性質之刻劃。
令 S_n ≡ { A ∈ M_n : d_A = 1 and |λ| < 1 for all λ ∈ σ(A) } 和 S_n^−1 ≡ { A ∈ M_n : d_A = 1 and |λ| > 1 for all λ ∈ σ(A)}。我們針對「缺陷指數為 1 的矩陣」研究其極分解、數值域、範數和冪次對缺陷指數的影響。進一步而言,我們證明了 S_n^−1-矩陣其實部的特徵值皆無重根。此外,我們也對 S_n^−1-矩陣的數值域做了詳細的刻劃。最後我們給出任一矩陣為S_n−1-矩陣的充分必要條件。 
Let M_n be the algebra of all n-by-n complex matrices. Let A be an n-by-n matrix. The defect index of A is defined and denoted by d_A ≡ rank (I_n − A∗A). In this thesis, we study some unitary-equivalence properties of matrices with defect index one. We denote S_n ≡ {A ∈ M_n : d_A = 1 and |λ| < 1 for all λ ∈ σ(A)} and S_n^−1 ≡ {A ∈ M_n : d_A = 1 and |λ| > 1 for all λ ∈ σ(A)}. We want to give some characterizations of the polar decompositions, numerical ranges, norms and defect indices of powers of matrices with defect index one. In particular, we show that the eigenvalues of the real part of operators in S_n^−1 are simple. Next, we give some characterizations of the numerical ranges of S_n^−1-matrices. Finally, we find the sufficient and necessary conditions for a matrix in the class S_n^−1.
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 Basic Properties for Numerical Ranges . . . . . . . . . . . . . 3
2.2 Powers of a Contraction . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Classifications of Matrices with Defect Index One. . . . . . 6
2.4 Matrices of Classes S_n and S_n^−1 . . . . . . . . . . . . . . 7
3 Characterizations of S_n^−1-matrices . . . . . . . . . . . . . . . 10
3.1 Spectrum of Real Part . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Numerical Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Defect Indices of Powers . . . . . . . . . . . . . . . . . . . . . . 19
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
[1] H. Bercovici, Operator Theory and Arithmetic in H∞, Amer. Math. Soc., Providence, 1988.

[2] R. Bhatia, Matrix Analysis, Springer, New York, 1997.

[3] H.-L. Gau, Numerical ranges of reducible companion matrices, Linear Alge-bra Appl., 432 (2010), 1310-1321.

[4] H.-L. Gau and P. Y. Wu, Numerical Range of S( ), Linear and Multilinear Algebra, 45 (1998), 49-73.

[5] H.-L. Gau and P. Y. Wu, Lucas’ Theorem Refined, Linear and Multilinear Algebra, 45 (1999), 359-373.

[6] H.-L. Gau and P. Y. Wu, Finite Blaschke products of contractions, Linear Algebra Appl., 368 (2003), 359-370.

[7] H.-L. Gau and P. Y. Wu, Defect indices of powers of a contraction, Linear Algebra Appl., 432 (2010), 2824-2833.

[8] K. E. Gustafson and D. K. M. Rao, Numerical Range: the Field of Values of Linear Operators and Matrices, Springer, New York, 1997.

[9] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge Univ. Press, 1985.

[10] C.-K. Li, A note on the unitary part of a contraction, preprint.

[11] B. Sz.-Nagy and C. Foia﹐s, Harmonic Analysis of Hilbert Space Operators, North Holland, Amsterdam, 1970.

[12] P. Y. Wu, Polar Decompositions of C0(N) contractions, Integral Equations Operator Theory, 56(2006), 559-569.

[13] P. Y. Wu, Numerical Ranges of Hilbert Space Operators, preprint.

[14] S.-C. Wu, A study on Matrices of Defect Index One, National Central Univ., Taiwan, June 2008.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top