跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/12 13:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭翔仁
研究生(外文):Hsiang-Jen Cheng
論文名稱:粉體熔融式凝聚機制與成長狀態
論文名稱(外文):Granular Growth Mechanisms and Behaviors in Melt Agglomeration
指導教授:蕭述三蕭述三引用關係
指導教授(外文):Shu-San Hsiau
學位類別:博士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:145
中文關鍵詞:高剪力混合槽成長形態凝聚機制黏著劑成核掃描式電子顯微鏡潤濕特性接觸角量測儀異質性分布同質性分布
外文關鍵詞:scanning electron microscopewetting propertyheterogeneous dispersionhomogeneous dispersionbindergranulation mechanismgrowth behaviorhigh-shear mixernucleationparticle image velocimetry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:212
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以實驗的方式探討粉體物質添加黏著劑,受到水平與垂直雙葉片高剪力攪拌時,內部粉體的凝聚行為。探討主題包含凝聚機制、粉體速度場分布、成品外型、表面結構以及成長形態。
首先建構濕式粉體凝聚設備--高剪力混合槽,用以操作所有基礎之凝聚現象。在碳酸鈣粉體低初始粒徑(32-75 μm)以及主葉片低轉速(300rpm)搭配下,粒徑分布隨操作時間呈現不同機制特性,包含成核、緊實或合併等現象,並進一步分析黏著劑黏度與含量的影響。
其二以原凝聚設備,在碳酸鈣粉體高初始粒徑(75-150 μm)以及主葉片高轉速(500-700rpm)搭配下,配合影像處理技術和顆粒追蹤方法,觀察混合槽內混亂流場情況,並利用掃描式電子顯微鏡和成長機制的特性,深入探討不同粉體物質填充量對外型、結構和粒徑分布的影響。
其三另外建構接觸角量測儀,用以觀察三種不同粉體物質:碳酸鈣、硫酸鈣和碳酸鈉在相同初始粒徑(75-150 μm)下,所受高溫黏著劑潤濕特性,進而應用潤濕特性觀察放入混合槽內凝聚狀態。由研究中發現粉體對黏著劑液體較慢潤濕的異質性分布現象,易促使誘入至高速凝聚大粒徑;而潤濕能力強之同質性分布現象則易導致零星的成核現象與小粒徑顆粒體。
The experimental methods were employed to investigate the granulation behavior of powder materials and binder liquid under the impeller and chopper mixing force. The main research topics include the granulation mechanisms, the velocity field of granules, the morphology of pellet, and the growth behaviors.
The agglomeration equipment— a high-shear mixer was designed and prepared at first. The raw materials included calcium carbonate powders with an average particle size of 32-75 μm and been operated on low impeller speed (300 rpm). Three major agglomeration mechanisms are discussed in this study: nucleation, consolidation and coalescence. The influence of binder viscosity and content are further presented.
The second research involved the effects of different initial volume fill ratios of the granulator on granular agglomeration. Calcium carbonate powders, with mean granule sizes of 75-150 μm were used as the raw material. Experiments of fill ratios are conducted for three conditions of parameters, (i) PEG 6000 and impeller speed at 500 rpm, (ii) PEG 6000 and impeller speed at 700 rpm, and (iii) PEG 4000 and impeller speed at 500 rpm. The range in granule size at the end of agglomeration increased as initial fill ratio increased. Low Vacuum Scanning Electron Microscope (LV-SEM) images of the surface structure of the granules are shown and the pellet shapes are also presented by the aspect ratio during the nucleation and final stages. On the other hand, the particle image velocimetry (PIV) experiments were also conducted by recording the moving granules during the mixing period with a high-speed Complementary Metal-Oxide-Semiconductor (CMOS) camera.
The third research was to investigate the effects of the different surface properties of powders on granular agglomeration. Three different powders, with mean granule sizes of 75-150 μm were used as the raw material: calcium carbonate, calcium sulfate, and sodium carbonate. The wetting properties of the raw materials were measured with a contact angle instrument. The results indicate that the speed at which the droplets sink into the powder bed and the contact angle of binder droplets on the powder surface play important roles in determining the progress of the agglomeration process. Several types of agglomeration were found: a slurry state, only nucleation, snowballing, and induction growth behavior. The heterogeneity and homogeneity of the dispersion brought about by the coalescence, layering and slow-wetting behaviors were analyzed. A heterogeneous dispersion leads to induction behavior and subsequent growth, but a homogeneous dispersion leads to little or no nucleation and non-enlargement of size.
摘要 i
Abstract ii
Acknowledgements v
Contents vi
List of Figures x
List of Tables xvii
List of Symbols xviii
Chapter 1 1
Introduction 1
1.1 Overview of granulation 1
1.2 Granulation mechanism 2
1.2.1 Wetting and nucleation 3
1.2.2 Consolidation and growth 6
1.2.3 Attrition and breakage 9
1.3 Powder and binder properties 10
1.4 Interaction between powder and binder 12
1.5 Fill ratio 13
1.6 Agitation in a high shear mixer 14
1.7 Growth regime map 16
1.8 The topics of the research 17
Chapter 2 22
The experimental set up and analyses 22
2.1 The apparatus of granulator 22
2.2Materials 22
2.3 Agglomeration procedure 23
2.4 Analysis of wetting ability 24
2.5 Analysis of granular size 24
2.6 Analysis of thermogravimetric 25
2.7 Photographs 25
2.8 Analysis of velocity field 26
Chapter 3 39
Influence of the binder content and viscosity on melt agglomeration behavior 39
3.1 Preface 39
3.2 Granulation mechanism 40
3.3 The effect of liquid content 41
3.4 Viscosity effect 45
3.5 Viscosity and liquid ratio 50
Chapter 4 68
Influence of the initial volume fill ratio of the granulator on melt agglomeration behavior 68
4.1 Preface 68
4.2 PEG6000 and 500rpm 69
4.2.1 Mean size 69
4.2.2 Size distribution 71
4.2.3 SEM images 72
4.2.4 Aspect ratio 73
4.3 PEG6000 and 700rpm 74
4.3.1 Mean size 74
4.3.2 Size distribution 75
4.3.3 Aspect ratio 76
4.4 PEG4000 and 500rpm 77
4.4.1 Mean size 77
4.4.2 Size distribution 77
4.4.3 Aspect ratio 78
4.5 Analysis of total granulations 79
4.5.1 Aspect ratio 79
4.5.2 Analysis of PIV 79
4.5.3 Analysis of size distribution 81
Chapter 5 108
Influence of the interaction between binder and powders on melt agglomeration behavior 108
5.1 Preface 108
5.2 Wetting ability 108
5.3 Mean size distribution 110
5.4 Size distribution 113
5.5 SEM images 117
Chapter 6 135
Conclusions 135
Braumann, A., Goodson, M. J., Kraft, M., and Mort, P. R., “Modelling and validation of granulation with heterogeneous binder dispersion and chemical reaction,” Chem. Eng. Sci. 62 (2007) 4717-4728.
Bock, T. K., and Kraas, U., “Experience with the diosna mini-granulator and assessment of process scalability,” Eur. J. Pharm. Biopharm., 52 (2001) 297-303.
Benali, M., Gerbaud, V., and Hemati, M., “Effect of operating conditions and physic-chemical properties on the wet granulation kinetics in high shear mixer,” Powder Technol. 190 (2009) 160-169.
Beekman, W. J., Meesters, G. M. H., Scarlett, B., and Becker, T., “Measurement of granule attrition and fatigue in a vibrating box,” Part. Part. Syst. Charact., 19 (2002) 5-11.
Beekman, W. J., Meesters, G. M. H., Becker, T., Gaertner, A., Gebert, M., Scarlrtt, B., “Failure mechanism determination for industrial granules using a repeated compression test,” Powder Technol., 130 (2003) 367-376.
Cheng, H. J., and Hsiau, S. S., “The study of granular agglomeration mechanism,” Powder Technol., 199 (2010) 272-283.
Chitu, T. M., Oulahna, D., and Hemati, M., “Wet granulation in laboratory scale high shear mixer: Effect of binder properties,” Powder technol., 206 (2011a) 25-33.
Chitu, T. M., Oulahna, D., and Hemati, M., “Wet granulation in laboratory-scale high shear mixer: Effect of chopper presence, design and impeller speed,” Powder technol., 206 (2011b)34-43.
Ennis, B. J., Tardos, G., and Pfeffer, R., “A microlevel-based characterization of granulation phenomena,” Powder Technol., 65 (1991) 257-272.
Ennis, B. J., and Litster, J. D., “Size reduction and size enlargement, in: R. Perry and D. Green (Eds.),” Perry’s Chemical Engineers’ Handbook, 7th edition, McGraw-Hill. (1997) 20-56 to 20-58.
Eliasen, H., Schæfer, T., and Kristensen, H. G., “Effect of binder rheology on melt agglomeration in a high shear mixer,” Int. J. Pharm., 176 (1998) 73-83.
Fan, X., Yang, Z., Parker, D. J., Ng, B., and Ghadiri, M., “Impact of surface tension and viscosity on solids motion in a conical high shear mixer granular,” AICHE J., 55 (2009) 3088-3098.
Fu, J., Adams, M. J., Reynolds, G. K., Salman, A. D., and Hounslow, M. J., “Impact deformation and rebound of wet granules,” Powder Technol., 140 (2004) 248-257.
Hapgood, K. P., Litster, J. D., Smith, R., “Nucleation regime map for liquid bound granules,” AICHE J., 49-2 (2003) 350-361.
Hoornaert, F., Wauters, P. A. L., Meesters, G. M. H., and Pratsinis, S. E., “Agglomeration behaviour of powders in a Lödige mixer granulator,” Powder Technol., 96 (1998) 116-128.
Iveson, S. M., and Litster, J. D., “Growth regime map for liquid-bound granules,” AICHE J., 44 (1998) 1510-1518.
Iveson, S. M., Litster, J. D., and Ennis, B. J., “Fundamental studies of granule consolidation Part 1: Effects of binder content and binder viscosity,” Powder Technol., 88 (1996) 15-20.
Iveson, S. M., and Litster, J. D., “Fundamental studies of granule consolidation Part 2: Quantifying the effects of particle and binder properties,” Powder Technol., 99 (1998) 243-250.
Iveson, S. M., Litster, J. D., Hapgood, K., and Ennis, B. J., “Nucleation, growth and breskage phenolmena in agitated wet granulateon processes : a review,” Powder Technol., 117 (2001a) 3-39.
Iveson, S. M., Wauters, P. A. L., Forrest, S., Litster, J. D., Meesters, G. M. H., and Scarlett, B., “Growth regime map for liquid-bound granules: further development and experimental validation,” Powder Technol., 117 (2001b) 83-97.
Johansen, A., and Schæfer, T., “Effects of physical properties of powder particles on binder liquid requirement and agglomerate growth mechanisms in a high shear mixer,” Euro. J. Pharm. Sci., 14 (2001a) 135-147.
Johansen, A., and Schæfer, T., “Effects of interaction between powder particle size and binder viscosity on agglomerate growth mechanisms in a high shear mixer,” Euro. J. Pharm. Sci., 12 (2001b) 297-309.
Knight, P. C., Instone, T., Pearson, J. M. K., and Hounslow, M. J., “An investigation into the kinetics of liquid distribution and growth in high shear mixer agglomeration,” Powder Technol., 97 (1998) 246-257.
Keningley, S. T., Knight, P. C., and Marson, A. D., “An investigation into the the effects of binder viscosity on agglomeration behavior,” Powder Technol., 91 (1997) 95-103.
Lachiver, E. D., Abatzoglou, N., Cartilier, L., and Simard, J. S., “Agglomeration tendency in dry pharmaceutical granular systems,” Eur. J. Pharm. Biopharm., 64 (2006) 193-199.
Leelamanie, D. A. L., and Karube, J., “Time dependence of contact angle and its relation to repellency persistence in hydrophobized sand,” Soil Sci. Plant Nutr., 55 (2009) 457-461.
Leelamanie, D. A. L., Karube, J., and Yoshida, A., “Characterizing water repellency indices: contact angle and water drop penetration time of hydrophobized sand,” Soil Sci. Plant Nutr., 54 (2008a) 179-187.
Leelamanie, D. A. L., Karube, J., and Yoshida, A., “Relative humidity effects on contact angle and water drop penetration time of hydrophobized fine sand,” Soil Sci. Plant Nutr., 54 (2008b) 695-700.
Liu, L. X., Litster, J. D., Iveson, S. M., and Ennis, B. J., “Coalescence of deformable granules in wet granulation processes,” AICHE J., 46 (2000) 529-539.
Mangwandi, C., Adams, M. J., Hounslow, M. J., and Salman, A. D., “Effect of batch size on mechanical properties of granules in high shear granulation,” Powder Technol., 206 (2011) 44-52.
Mills, P. J. T., Seville, J. P. K., Knight, P. C., and Adams, M. J., “The effect of binder viscosity on particle agglomeration in a low shear mixer/agglomerator,” Powder Technol., 113 (2000) 140-147.
Mort, P. R., “Scale-up of binder agglomeration processes,” Powder Technol., 150 (2005) 86-103.
Muzzio, F. J., Shinbrot, T., and Glasser, B. J., “Powder technology in the pharmaceutical industry: the need to catch up fast,” Powder Technol., 124 (2002) 1-7.
Nguyen, T., Shen, W., and Hapgood, K., “Drop penetration time in heterogeneous powder beds,” Chem. Eng. Sci., 64 (2009) 5210-5221.
Ohno, I., Hasegawa, S., Yada, S., Kusai, A., Moribe, K., and Yamamoto, K., “Importance of evaluating the consolidation of granules manufactured by high shear mixer,” Int. J. Pharm. 338 (2007) 79-86.
Pudasaini, S. P., Hsiau, S. S., Wang, Y., and Hutter, K., “Velocity measurements in dry granular avalanches using particle image velocimetry technique and comparison with theoretical predictions,” Phys. Fluids, 17 (2005) 193301.
Pudasaini, S. P., Hutter, K., Hsiau, S. S., Tai, S. C., Wang, Y., and Katzenbach, R., “Rapid flow of dry granular materials down inclined chutes impinging on rigid walls,” Phys. Fluids, 19 (2007) 053302.
Pudasaini, S. P., and Hutter, K., “Avalanche dynamics,” Springer, (2007)467-468.
Rough, S. L., Wilson, D. I., York, D. W., “A regime map for stages in high shear mixer agglomeration using ultra- high viscosity binders,” Adv. Powder Technol., 16-4 (2005) 373-386.
Samimi, A., Ghadiri, M., Boerefijn, R., Groot, A., and Kohlus, R., “Effect of structural characteristics on impact breakage of agglomerates,” Powder Technol., 130 (2003) 428-435.
Saito, Y., Fan, X., Ingram, A., Secille, J. P. K., “A new approach to high-shear mixer granulation using positron emission particle tracking,” Chem. Eng. Sci., 66 (2011) 563-569.
Schæfer, T., and Mathiesen, C., “Melt pelletization in a high shear mixer. VIII. Effects of binder viscosity,” Int. J. Pharm., 139 (1996a) 125-138.
Schæfer, T., and Mathiesen, C., “Melt pelletization in a high shear mixer. IX. Effects of binder particle size,” Int. J. Pharm., 139 (1996b) 139-148.
Schæfer, T., Holm, P., and Kristensen, H. G., “Melt pelletization in a high shear mixer. II. Powder consumption and granule growth,” Acta Pharm. Nord., 4(1992) 141-148.
Schæfer, T., Johansen, D., and Johansen, A., “Effect of powder particle size and binder viscosity on intergranular and intragranular particle size heterogeneity during high shear granulation,” Euro. J. Pharm. Sci., 21 (2004) 525-531.
Schaafsma, S. H., Vonk, P., Segers, P., and Kossen, N. W. F., “Description of agglomerate growth,” Powder Technol., 97 (1998) 183-190.
Scott, A. C., Hounslow, M. J., and Instone, T., “Direct evidence of heterogeneity during high-shear granulation,” Powder Technol., 113 (2000) 205-213.
Tardos, G. I., Khan, M. I., and Mort, P. R., “Critical parameters and limiting conditions in binder granulation of fine powders,” Powder Technol., 94 (1997) 245-258.
Tardos, G. I., “Wet-granulation research with application to scale-up,” China Part., 3 (2005) 191-195.
Thies, R., and Kleinebudde, P., “Melt pelletisation of a hygroscopic drug in a high shear mixer part 2. Mutual compensation of influence variables,” Euro. J. Pharm. Sci., 10 (2000) 103-110.
Tereshita, K., Nishimura, T., and Natsuyama, S., “Optimization of operating conditions in a high-shear mixer using DEM model: determination of optimal fill level,” Chem. Pharm. Bull., 50 (12) (2002) 1550-1557.
Van den Dries, K., and Vromans, H., “Quantitative proof of liquid penetration- involved granule formation in a high shear mixer,” Powder Technol., 189 (2009)165-171.
Vonk, P., Guillaume, C. P. F., Ramaker, J. S., Vromans, H., and Kossen, N. W. F., “Growth mechanisms of high-shear pelletisation,” Int. J. Pharm., 157 (1997) 93-102.
Wauters, P. A. L., Jakobsen, R. B., Litster, J. D., Meesters, G. M. H., and Scarlett, B., “Liquid distribution as a means to describing the granule growth mechanism,” Powder Technol., 123 (2002a) 166-177.
Wauters, P. A. L., van de Water, R., Litster, J. D., Meesters, G. M. H., Scarlett, B., “Growth and compaction behavior of copper concentrate granules in a rotating grum,” Powder Technol., 124 (2002b) 230-237.
Yang, W. L., and Hsiau, S. S., “The effect of liquid viscosity on sheared granular flows,” Chem. Eng. Sci., 61 (2006) 6085-6095.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 19.張菀珍、黃富順(2006)。我國外籍配偶學習需求與現況之研究。成人及終身教育學刊,7 , 75-101 。
2. 6.何青蓉(1995)。「需求評估」概念的澄清與分析。成人教育,23 , 41- 46 。
3. 17.胡夢鯨、吳宗雄、蕭佳純(2003)。學習型補校的組織學習、發展策略與問題解決成效關係之研究。成人及終身教育學刊,l , 35-62 。
4. 16.胡夢鯨(1995)。國民中小學實施成人基本教育的問題與展望。成人教育,28 , 46 -53 。
5. 15.胡小玫(2006)。美國退休學習協會之運作及對我國高齡教育之敔示。成人及終身教育,15,39-48。
6. 7.何青蓉(1997)。 國民補習教育、成人基本教育與成人識字教育的異同。成人教育,40 , 32 -36 。
7. 22.郭昱均、高淑貴(2003)。高雄市長青學苑高齡者生活型態與學習需求之研究。農業推廣學報,20 , 57 -80 。
8. 25.陳清美(2001)。高齡者對學習環境的偏好。成人教育,64 , 43 -50 。
9. 28.崛薰夫、陳黛芬(2006)。日本高齡教育:大阪老人大學的教育策略。成人及終身教育,16 ,11 -15。
10. 29.黃富順(2005)。人口結構改變對成人及高齡教育的影響與因應。成人及終身教育,7 ,2 -13 。
11. 30.黃富順(2006)。二次戰後成人教育思潮的演變與發展趨勢。成人及終身教育,14 , 2 -10 。
12. 31.黃富順(2006)。新住民及其子女的教育問題與輔導。成人及終身教育,13 ,29 -35 。
13. 32.黃富順(2007)。建構外籍配偶語文識字及生活基本之能指標之研究。成人及終身教育,17 , 2 - 10 。
14. 38.劉憲通、吳景峰、吳金標(1995)。臺北縣國小補校實施現況調查研究。成人教育輔導季刊,2 ,28-32。
15. 41.蕭佳純(2006)。邁向學習型補校的內部困境與發展策略之研究。管理與教育研究學報,6 ,1-23 。