(3.238.174.50) 您好!臺灣時間:2021/04/11 11:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鍾博仁
研究生(外文):Bo-zen Zhong
論文名稱:軋延與T6處理對Al2O3/6061、SiC/6061鋁基複材磨耗性質影響之研究
論文名稱(外文):Effects of Rolling-and-T6-Treatment on the Wear Properties of the Al2O3 and SiC Particulate Reinforced Aluminum Matrix Composites
指導教授:李雄李雄引用關係
指導教授(外文):Shyong Lee
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:59
中文關鍵詞:鋁基複合材料Al2O3SiC乾磨耗軋延T6熱處理
外文關鍵詞:Aluminum matrix compositesAl2O3SiCDry wearRollingT6 treatment
相關次數:
  • 被引用被引用:1
  • 點閱點閱:249
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:68
  • 收藏至我的研究室書目清單書目收藏:0
本論文係由中山科學研究院提供之鑄造Al2O3/6061及SiC/6061鋁基複合材料作為研究對象。Al2O3/6061鋁基複合材料分別進行350℃熱軋延量80%、冷軋延量80%、冷軋延量60%後再經過T6熱處理 (固溶處理530℃/2.5h,時效處理160℃/18h);SiC/6061鋁基複合材料分別進行20%、40%、60%、80%四種不同之350℃熱軋延量後再經過T6熱處理後,探討不同軋延加工量及T6處理後對此兩種鋁基複合材料磨耗特性之影響。同時,使用掃描式電子顯微鏡觀察拉伸破斷面與磨秏後表面之破壞形態。其乾磨秏試驗條件為荷重25N、往復行程1mm、頻率20Hz時間45分鐘、總磨耗距離108m以及環境溫度室溫及150℃下。
實驗結果顯示,Al2O3/6061及SiC/6061鋁基複合材料經T6處理後硬度及強度皆有明顯的提升。Al2O3/6061鋁基複合材料之磨耗率隨氧化鋁顆粒含量的增加而下降。並且發現20wt%Al2O3/6061鋁基複合材料經過熱軋延80%與T6處理後有最佳的耐磨耗性。鋁基複材高溫150℃磨耗後表面形態主要為黏著及疲勞現象。
This thesis concludes the wear properties of the casted Al2O3/6061 and SiC/6061 aluminum matrix composites which are provided by the Chungshan Institute of Science and Technology. After different rolling reductions, the composites were T6-heat treated (530℃ solid solution treatment for 2.5 hrs; aged at 160℃ for 18 hrs); Dry wearing tests results are reported. Moreover, the tensile fracture surfaces and morphologies of worn surfaces were observed by SEM. The wear testing parameters include applied loads of 25N; reciprocating stroke of 1 mm; reciprocating frequency of 20 Hz for 45 min; total sliding distance of 108 m; and the test temperatures were at room temperature and 150℃.
After T6 treatment, the hardness of Al2O3/6061 and SiC/6061 aluminum matrix composites’ increase obviously. The wear rates reduce with the increase of Al2O3 particles inclusions. The Al2O3/6061 aluminum-matrix composites with 20% Al2O3 particles inclusions with 80% hot rolling and T6 treatment has the best dry wear resistance. We observed the adhesion and fatigue phenomenon from the primary worn surface morphology of the composites’.
總目錄
中文摘要 I
ABSTRACT II
誌謝 III
總目錄 IV
表目錄 VI
圖目錄 VII
第一章、 緒論 1
第一節、 鋁基複合材料簡介 2
第二節、 鋁基複合材料磨耗的影響因素[18] 2
第三節、 強化機構 3
一、 散佈強化 3
二、 細晶強化 3
三、 加工硬化 4
四、 固溶強化 4
五、 析出強化 5
第四節、 磨耗與摩擦簡介 5
第五節、 磨耗表面形態 8
第二章、 實驗步驟 12
第一節、 材料 12
第二節、 T6處理 13
第三節、 機械性質分析 13
一、 硬度試驗 13
二、 拉伸試驗 14
三、 磨耗試驗 14
第四節、 微觀結構分析 15
一、 光學顯微鏡觀察 15
二、 掃描式電子顯微鏡觀察 16
三、 X光繞射分析 16
第三章、 結果與討論 23
第一節、 機械性質分析 23
一、 硬度試驗 23
二、 拉伸試驗 23
三、 磨耗試驗 24
第二節、 微觀結構分析 28
一、 光學顯微鏡觀察 28
二、 掃描式電子顯微鏡觀察 29
三、 X光繞射分析 29
第三節、 拉伸破斷面觀察 30
第四節、 磨耗表面形態 31
第四章、 結論 55
第一節、 結論 55
第二節、 建議 56
參考文獻 57
1.Lu, K., The Future of Metals. Science, 2010. 328(5976): p. 319-320.
2.Friend, C.M., I. Horsfall, and C.L. Burrows, The effect of particulate: fibre ratio on the properties of short-fibre/particulate hybrid MMC produced by preform infiltration. Journal of Materials Science, 1991. 26(1): p. 225-231.
3.Shang, J.K., W.K. Yu, and R.O. Ritchie, Role of silicon carbide particles in fatigue crack growth in SiC-particulate-reinforced aluminum alloy composites. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 1988. 102(2): p. 181-192.
4.Nair, S.V.T., J. K.; Bates, R. C., SiC-reinforced aluminium metal matrix composites. International Materials Reviews, 1985. 30: p. 275-290(16).
5.Chawla, K.K., Composite Materials: Science and Engineering (Materials Research and Engineering)May 2001: Springer. 1.
6.Ellis, M.B.D., Joining of aluminium based metal matrix composites. International Materials Reviews, 1996. 41(2): p. 41-58.
7.Modi, O.P., et al., Erosion-corrosion characteristics of squeeze cast aluminium alloy/SiC composites in water and sodium chloride solutions containing sand. Materials Science and Technology, 1999. 15(8): p. 933-938.
8.Jiang, C.H., Metal Industry, 1997. 31(5): p. 43-45.
9.Kaczmar, J.W., K. Pietrzak, and W. Wlosinski, The production and application of metal matrix composite materials. Journal of Materials Processing Technology, 2000. 106(1-3): p. 58-67.
10.Kainer, K.U., Basics of Metal Matrix Composites. Metal Matrix Composites2006: Wiley-VCH Verlag GmbH & Co. KGaA. 1-54.
11.Alpas, A.T. and J. Zhang, Effect of microstructure (particulate size and volume fraction) and counterface material on the sliding wear resistance of particulate-reinforced aluminum matrix composites Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 1994. 25(5): p. 969-983.
12.Song, W.O., et al., The effect of thermal ageing on the abrasive wear behaviour of age-hardening 2014 Al/SiC and 6061 Al/SiC composites. Wear, 1995. 185(1-2): p. 125-130.
13.Venkataraman, B. and G. Sundararajan, The sliding wear behaviour of Al-SiC particulate composites .1. Macrobehaviour. Acta Materialia, 1996. 44(2): p. 451-460.
14.Yu, S.Y., et al., Temperature dependence of sliding wear behavior in SiC whisker or SiC particulate reinforced 6061 aluminum alloy composite. Wear, 1997. 213(1-2): p. 21-28.
15.Benal, M.M. and H.K. Shivanand, Effects of reinforcements content and ageing durations on wear characteristics of Al (6061) based hybrid composites. Wear, 2007. 262(5-6): p. 759-763.
16.Ramesh, C.S. and M. Safiulla, Wear behavior of hot extruded A16061 based composites. Wear, 2007. 263: p. 629-635.
17.Boecker, W.D.G., Silicon carbide: From Acheson''s invention to new industrial products - Dedicated to Prof Dr Hans Hausner on the occasion of his 70th birthday. Cfi-Ceramic Forum International, 1997. 74(5): p. 244-251.
18.Veeresh Kumar, G.B., C.S.P. Rao, and N. Selvaraj, Mechanical and Tribological Behavior of Particulate Reinforced Aluminum Metal Matrix Composites - a review. Journal of Minerals & Materials Characterization & Engineering, 2011. 10(1): p. 59-91.
19.Committee, A.I.H., ASM Handbook, Volume 04 - Heat Treating. Vol. 4. 1991: ASM International. 673-675.
20.Lee, H.L., W.H. Lu, and S.L.I. Chan, Abrasive wear of powder metallurgy Al alloy 6061-SiC particle composites. Wear, 1992. 159(2): p. 223-231.
21.Suresh, S., T. Christman, and Y. Sugimura, Accelerated aging in cast Al alloy-SiC particulate composites. Scripta Metallurgica, 1989. 23(9): p. 1599-1602.
22.Nieh, T.G. and R.F. Karlak, Aging characteristics of B4C-reinforced 6061-aluminium. Scripta Metallurgica, 1984. 18(1): p. 25-28.
23.Cayless, R.B.C., Alloy and Temper Designation Systems for Aluminum and Aluminum Alloys. ASM Handbook. Vol. 2. 1990. 15-28.
24.Christman, T., et al., On microstructural evolution and micromechanical modelling of deformation of a whisker-reinforced metal-matrix composite. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 1989. 107: p. 49-61.
25.Reed-Hill, R.E., Physical Metallurhy Principles. 2 ed2008: Affilated East-west Press Pvt Ltd. .
26.Barrett, C.R., A.S. Tetelman, and W.D. Nix, eds. The Principles of Engineering Materials. 1973, Prentice Hall: Materials Department University of California at Los Angeles. 1-328.
27.Dutta, I. and D.L. Bourell, A theoretical and experimental study of aluminum alloy 6061-SiC metal matrix composite to identify the operative mechanism for accelerated aging. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 1989. 112: p. 67-77.
28.Dutta, I., D.L. Bourell, and D. Latimer, A Theoretical Investigation of Accelerated Aging in Metal-Matrix Composites. Journal of Composite Materials, 1988. 22(9): p. 829-849.
29.Kragelskii, I.V., Friction and Wear. 1965.
30.Suh, N.P. and H.C. Sin, The genesis of friction. Wear, 1981. 69(1): p. 91-114.
31.Suh, N.P., Update on the Delamination Theory of Wear Fundamentals of Friction and Wear of Materials, 1981: p. 43-71.
32.Lim, S.C. and M.F. Ashby, Wear-mechanism maps. Acta Metallurgica, 1987. 35(1): p. 1-24.
33.蔡錫鐃, 1989: p. 230-232.
34.Wu, J., et al., Analysis of casting defects in SiCp reinforced aluminum matrix composites. Vol. 35. 1999, Beijing, China: Science Press. 6.
35.劉明忠, Al2O3顆粒強化6061鋁基複合材料之高溫拉伸與室溫磨耗性質研究, in 機械工程研究所2010, 國立中央大學: 桃園縣. p. 107.
36.彭嘉肇, 鋁基複合材料疲勞及磨耗特性之研究, in 機械工程研究所1992, 國立中央大學: 桃園縣. p. 245.
37.Chu, H.S., K.S. Liu, and J.W. Yeh, Study of 6061-Al2O3p composites produced by reciprocating extrusion. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2000. 31(10): p. 2587-2596.
38.Stott, F.H., The role of oxidation in the wear of alloys. Tribology International, 1998. 31(1-3): p. 61-71.
39.Razavizadeh, K. and T.S. Eyre, Oxidative wear of aluminium alloys. Wear, 1982. 79(3): p. 325-333.
40.林彥勝, 冷滾壓與時效熱處理對Al2O3粒子強化6061鋁基複材磨耗行為影響之研究. 兵器系統工程研究所, 1993. 碩士: p. 30.
41.Martin, A., J. Rodriguez, and J. Llorca, Temperature effects on the wear behavior of particulate reinforced Al-based composites. Wear, 1999. 225: p. 615-620.
42.Gupta, M., M.K. Surappa, and S. Qin, Effect of interfacial characteristics on the failure-mechanism mode of a SiC reinforced Al based metal-matrix composite. Journal of Materials Processing Technology, 1997. 67(1-3): p. 94-99.
43.Perng, C.C., M.C. Jeng, and J.L. Doong, Wear Behavior of Al2O3/6061-T6 Aluminum Alloy Matrix Composite. Journal of the Chinese Society of Mechanical Engineers, 1994. 15: p. 118-127.
44.Hashim, J., L. Looney, and M.S.J. Hashmi, The enhancement of wettability of SiC particles in cast aluminium matrix composites. Journal of Materials Processing Technology, 2001. 119(1-3): p. 329-335.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔