(3.237.20.246) 您好!臺灣時間:2021/04/14 10:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:胡惠茹
研究生(外文):Hui-ju Hu
論文名稱:顆粒表面粗糙度在不同旋轉儀轉速下流動行為之探討
論文名稱(外文):Effect of Granular Surface Roughness on Flow Behavior in Different Rotating Drum Speed
指導教授:蕭述三蕭述三引用關係
指導教授(外文):Shu-san Hsiau
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:98
中文關鍵詞:速度場安息角角度表面粗糙度旋轉儀
外文關鍵詞:velocity fieldangle of reposesurface roughnessRotating drum
相關次數:
  • 被引用被引用:1
  • 點閱點閱:201
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要在針對不同表面粗糙度的顆粒體在旋轉儀內的動態行為與傳輸性質進行探討。其中,不同表面粗糙度的顆粒體是把相同物理性質的顆粒與形狀不規則的鋼礫置入振動床磨製完成的。而後再利用Jenike量測儀器,量測出顆粒體的內部摩擦角以及壁面摩擦角,用以檢驗顆粒體的表面粗糙度發生改變。最後把顆粒體(單一類別顆粒,混合不同粗糙度顆粒)置入旋轉儀中,利用高速攝影機拍攝其運動過程,並分析計算出顆粒體在不同表面粗糙度及不同旋轉儀轉速下的安息角角度、流動層厚度,與各項顆粒傳輸性質。
實驗結果顯示出不同表面粗糙度的顆粒體對於系統內流場之影響是很大的。當系統中只置入同一粗糙性質的顆粒體時,顆粒體越粗糙將會造成越大的安息角角度,但當顆粒在流動時,因彼此的摩擦力變大會使得流動速度變慢,進一步得知顆粒的擾動速度以及粒子溫度也會隨之減小。其次,當系統中同時置入兩種不同粗糙性質的顆粒體時,顆粒的流場行為是更為複雜的,此時,藉由流動中顆粒所形成之安息角角度的大小,我們可以定義出造成流場行為不同的三個主要效應影響區間(zone)。
In this study, we investigate the effect of particle surface roughness on the dynamic properties in a rotating drum. The particle surface roughness is prepared by using a vibration bed. Then we used Jenike shear tester to measure the internal friction angle and wall friction angle. Finally, the granular flow behavior were recorded by a high-speed camera both mono-dispersed and binary-mixtures granular systems are investigated. Image processing technique to measure the angle of repose, flowing layer thickness and granular transport properties.
The results show that the different particle surface roughness causes great influence on granular flow. In the mono-dispersed granular system, the angle of repose increases with the increasing of the internal friction angle, but the average granular velocity, fluctuation velocity and granular temperature decrease with the increasing of the internal friction angle. The granular flowing behavior becomes even more complicated in the binary-mixtures granular system than the mono-dispersed granular system. According to the angle of repose, we can identify three effective dominant zones.
摘要 i
Abstract ii
目錄 iii
附圖目錄 v
附表目錄 ix
符號說明 x
一、簡介 1
1-1粒子流簡介 1
1-2 顆粒體在精密旋轉儀中的現象 3
1-3旋轉儀中的運動型態 5
1-4旋轉儀中滾動型態下的兩個區域 7
1-5顆粒體表面性質不同之研究 8
1-6 研究動機 10
1-7 研究方向與架構 10
二、實驗方法 12
2-1 實驗與觀測測量設備 12
2-2實驗原理與方法 15
2-2-1 Jenike量測壁面摩擦角 15
2-2-2 Correlation 簡介 15
2-2-3 粒子溫度之概念 18
2-3實驗步驟 19
三、結果與討論 21
3-1單一粗糙度顆粒在不同轉速下顆粒流動性質之探討 21
3-1-1 不同粗糙度顆粒對安息角角度之影響 21
3-1-2 不同粗糙度顆粒體之速度場分析與粒子溫度之探討 23
3-1-3 不同粗糙度顆粒對流動層厚度之影響 26
3-2 混合不同粗糙度顆粒在不同轉速下顆粒流動性質之探討 27
3-2-1 混合不同粗糙度顆粒體對安息角角度之影響 28
3-2-2 混合不同粗糙度顆粒體之速度場分析 29
3-2-3 不同位能下不同顆粒流動現象之探討 31
四、結論 33
參考文獻 35
1.H.J. Herrmann, “Physics of granular media,” Chaos, Solitons and Fractals, Vol.6, pp.203-212, 1995.
2.B. J. Ennis, J. Green and R. Davies, “The legacy of neglect in the U.S.,” Chemical engineering progress, Vol.90, pp. 32-43, 1994.
3.S.M. Chaudeur, H. Berthiaux, and J.A. Dodds, “Experimental study of the mixing kinetics of binary pharmaceutical powder mixtures in a laboratory hoop mixer,” Chemical Engineering Science, Vol.57, pp.4053-4065, 2002.
4.R.A. Bagnold, “Experiments on a gravity-free dispersion of large solid spheres in a newtonian fluid under shear,” Proceeding Royal Society of London, series A, Vol.225,No. 225, pp. 49-63,1954.
5.S Ogawa., “Multi-temperature theory of granular materials,” In Proceedings of US-Japan Seminar on Continuum-Mechanical and Statistical Approaches in the Mechanics of Granular Materials, pp.208-217, Tokyo, Japan,1978.
6.N. Metropolis, S Ulam, “The Monte Carlo Method,” Journal of the American Statistical Association, Vol. 44, No. 247, pp. 335-341.1949.
7.P.A. Cundall and O.D.L Strack, “A discrete numerical model for granular assemblies,” Geotechnique, Vol. 29, No. 1, pp. 47-65 ,1979.
8.P. Bak, C. Tang and K. Wiesenfeld “Self-organized criticality: an explanation of 1 / f noise,” Physical Review Letters 59,pp.381-384,1987.
9.H. Ahn, C.E. Brennen, and R.H. Sabersky, “Measurements of velocity fluctuation, density, and stressesin chute flows of granular materials,” Journal of Applied Mechanics, Vol. 58, pp. 792-803 , 1991.
10.S.S.Hsiau and M. L. Hunt, “Shear-induced particle diffusion and logitndinal velocity fluctuations in a granular-flow mixing layer,” Journal of Fluid Mechanics, Vol. 251, pp. 299-313 , 1993.
11.V.V.R. Natarajan, M.L. Hunt and E.D. Taylor, “Local measurements of velocity fluctuations and diffusion coefficients for a granular material flow,” Journal of Fluid Mechanics, Vol. 304, pp. 1-25 , 1995.
12.X.Y. Liu, E. Specht, J. Mellmann, “Experimental study of the lower and upper angles of repose of granular materials in rotating drums,” Powder Technology, Vol. 154, pp. 125-131, 2005.
13.N.A. Pohlman, B.L. Severson, J.M. Ottino, and R.M. Lueptow, “Surface roughness effects in granular matter: influence on angle of repose and the absence of segregation,” Physical Review E, Vol. 73, pp. 031304: 1-9, 2006.
14.G. Felix, V. Falk, and U. D’Ortona, “Segregation of dry granular material in rotating drum: experimental study of the flowing zone thickness,” Powder Technology, Vol. 128, pp. 314-319, 2002.
15.C.M. Dury, and G.H. Ristow, “Competition of mixing and segregation in rotating cylinders,” Physics of Fluids, Vol. 11, pp. 1387-1394, 1999.
16.S. Chakraborty, P.R. Nott, and J.R. Prakash, “Analysis of radial segregation of granular mixtures in a rotating drum,” The European Physical Journal E, Vol. 1, pp. 265-273, 2000.
17.G.H. Ristow, “Particle mass segregation in a two-dimensional rotating drum,” Europhysics Letters, Vol. 28, pp. 97-101, 1994.
18.N. Jain, J.M. Ottino, and R.M. Lueptow, “Regimes of segregation and mixing in combined size and density granular systems: an experimental study,” Granular Matter, Vol. 7, pp. 69-81, 2005.
19.H Henein, J.K. Brimacomble, and A.P. Watkinson, “Experimental study of transverse bed motion in rotary kilns,” Metallurgical and Materials Transactions B, Vol. 14, pp. 191-205, 1983.
20.J. Rajchenbach, “Flow in powders: from discrete avalanches to continuous regime,” Physical Review Letters, Vol. 65, pp. 2221-2224, 1990.
21.J. Mellmann, “The transverse motion of solids in rotating cylinders-forms of motion and transition behavior,” Powder Technology, Vol 118, pp. 251-270, 2001.
22.A.A. Boateng, and B.V. Barr, “Modeling of particle mixing and segregation in the transverse plane of a rotary kiln,” Chemical Engineering Science, Vol. 51, pp. 4167-4181, 1996.
23.A. Ingram, J.P.K. Seville, D.J. Parker, X. Fan, and R.G. Forster, “Axial and radial dispersion in rolling mode rotating drums,” Powder Technology, Vol. 158, pp. 76-91, 2005.
24.A.A. Boateng, “Boundary layer modeling of granular flow in the transverse plane of a partially filled rotating cylinder,” International Journal of Multiphase Flow, Vol. 24, pp. 499-521, 1998.
25.A.V. Orpe, and D.V. Khakhar, “Scaling relations for granular flow in quasi-two-dimensional rotating cylinders,” Physical Review E, Vol.64, pp. 031302 1-13, 2001.
26.X.Y. Liu, E. Specht, O.G. Gonzalez, P. Walzel, “Analytical solution for the rolling-mode granular motion in rotary kilns,” Chemical Engineering and Processing, Volume 45, Issue 6, Pages 515-521, 2006.
27.CA Coulomb, “Théorie des machines simples en ayant égard au frottement de leurs parties et a la roideur des cordages,” Memoires de lacademie royale des sciences, 1785.
28.P.Y. Lai, L.C. Jia, C.K. Chan, “Friction Induced Segregation of a Granular Binary Mixture in a Rotating Drum,” Physical Review Letters, Vol.79,, pp.4994-4997,1997.
29.Y.C Zhou, B.H. Xu, A.B. Yu, P. Zulli, “An experimental and numerical study of the angle of repose of coarse spheres,” Power Technology, Vol.125, pp.45-54, 2002.
30.L.S. Lu, S.S. Hsiau, “DEM simulation of particle mixing in a sheared granular flow,” China Particuology, Vol.6, pp.445-454, 2008.
31.S.C. Yang, “Density effect on mixing and segregation processes in a vi-brated binary granular mixture,” Powder Technology, Vol.164, pp.65-74, 2006.
32.L.S. Lu, S.S. Hsiau, “Mixing in a vibrated granular bed: diffusive and convective effect,” Powder Technology, Vol.184, pp.31-43, 2008.
33.L. Kondic, R.R. Hartley, S.G.K. Tennakoon, B. Painter and R.P. Behringer, “Segregation by Friction,” Europhysics Letters, Vol.61, No.6, pp. 742-748, 2003.
34.S. Ulrich, M. Schröter, H. L. Swinney, “Influence of friction on granular segregation,” Physical Review E, Vol. 76, 042301, 2007.
35.N. Jain, J.M. Ottino, and R.M. Lueptow, “Regimes of segregation and mixing in combined size and density granular systems: an experimental study,” Granular Matter, Vol.7, pp. 69-81, 2005.
36.A.W. jenike. “Gravity Flow of Bulk Solids. Bulletin,” Utah Engineering Experience, No.108 , 1961.
37.D.R. Van Puyvelde, B.R. Young, M.A. Wilson, and S.J. Schmidt, “Experimental determination of transverse mixing kinetics in a rolling drum by image analysis,” Powder Technology, Vol. 106, pp. 183-191, 1999.
38.G.J. Finnie, N.P. Kruyt, M. Ye, C. Zeilstra, and J.A.M. Kuipers, “Longitudinal and transverse mixing in rotary kilns: a discrete element method approach,” Chemical Engineering Science, Vol. 60, pp. 4083-4091, 2005.
39.K.M. Hill and J. Kakalios, “Reversible axial segregation of rotating granular media,” Physical Review E, Vol. 52, pp. 4393-4400, 1995.
40.H.M. Jaeger, C.H. Liu, S.R. Nagel, and T.A. Witten, “Friction in granular flows,” Europhys Letter, Vol. 11, pp. 619-624, 1990.
41.C.S. Campbell, “Rapid granular flows,” Annual Review of Fluid Mechanics, Vol. 22, pp. 57-92, 1990.
42.S.S. Hsiau and Y.H. Shieh, “Fluctuations and self-diffusion of sheared granular material flows,” Journal of Rheology, Vol. 43, pp.1049-1066, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔