(100.26.179.251) 您好!臺灣時間:2021/04/14 08:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃振維
研究生(外文):Chen-Wei Huang
論文名稱:LaNi5與La0.6Ce0.4Ni5儲氫合金罐膨脹變形分析
論文名稱(外文):Analysis of Expansive Deformation in LaNi5 and La0.6Ce0.4Ni5 Hydride Storage Vessels
指導教授:林志光林志光引用關係
指導教授(外文):Chih-Kuang Lin
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:88
中文關鍵詞:儲氫合金罐膨脹應變氫能儲氫技術
外文關鍵詞:expansive deformationhydrogen storagemetal hydrideLa0.6Ce0.4Ni5LaNi5
相關次數:
  • 被引用被引用:1
  • 點閱點閱:147
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:0
本研究主旨在探討LaNi5與La0.6Ce0.4Ni5儲氫合金罐體在循環吸放氫作用之下,不同粉末填充率以及罐體擺設方向對於罐壁應變變化的影響,並探討中空型與隔層型二種儲氫合金罐體結構設計對於罐體膨脹變形之影響。LaNi5 與La0.6Ce0.4Ni5兩款合金粉末之實驗條件分別為在3.2 MPa 及5 MPa 氫氣壓力下吸氫,真空狀態下放氫,於室溫下連續進行80次吸放氫循環,並利用掃瞄式電子顯微鏡觀察合金粉末在活化前以及實驗後的外觀型貌與尺寸變化。
實驗結果顯示,在吸放氫循環過程中,合金粉末吸氫膨脹會使罐體外壁產生明顯的應變值。在實驗過程中,合金粉末的粉碎化和緻密堆積現象是無可避免的,因此在垂直中空型罐體較低的區域會產生較大程度的應變累積。垂直中空型罐體在較高粉末填充率的條件下,每個吸放氫循環過程當中的吸氫應變與放氫應變之差值也相對的較大。罐體內增加隔層腔體的設計,可使合金粉末平均分配在罐體各層,以達到減少粉末緻密堆積及結塊的情形發生,所以粉碎化後的細化合金粉末在罐體中呈現鬆散的狀態,使得應變累積現象明顯減小。相較於垂直中空型罐體,將罐體放置於水平方向,也可以有效減少粉末堆積並降低應變累積到很小的程度,同時顯著改善其吸氫速率。總而言之,對於設計一個符合安全以及較高效率的儲氫合金罐體,增加一隔層腔體設計或將罐體水平放置,皆可滿足這個要求。
The purpose of this study is to investigate variations of wall strain in the hydride storage vessels of LaNi5 and La0.6Ce0.4Ni5 with different packing fractions and vessel placements during cyclic hydriding/dehydridng processes. Hollow and multi-chamber types of metal hydride storage vessels were employed for the expansion deformation analysis. The LaNi5 and La0.6Ce0.4Ni5 alloy powders were repeatedly hydrided with 3.2 MPa and 5 MPa hydrogen, respectively, and then dehydrided with vacuum at room temperature during the cyclic test. Morphologies of the LaNi5 and La0.6Ce0.4Ni5 powders before activation and after the cyclic test were examined using scanning electron microscopy.
Experimental results showed that significant absorption strains in the vessel wall were induced by volume expansion of LaNi5 and La0.6Ce0.4Ni5 hydrides in vertical hollow vessels. A great extent of strain accumulation at a lower position in a vertical hollow vessel was attributed to the unavoidable pulverization and agglomeration of alloy powders. In a vertical hollow reaction vessel, a larger packing fraction resulted in a greater difference between the absorption and desorption strain during a hydriding/dehydriding cycle. Powder densification and agglomeration could be effectively lessened by a multi-chamber structure in a vertical reaction vessel resulting in a very small extent of strain accumulation. Placement of a hollow reaction vessel in a horizontal rather than vertical orientation could also effectively reduce the extent of powder agglomeration and strain accumulation to a minimum level and improve the hydriding reaction rate. In summary, for design of a hydride storage vessel with a greater reliability and efficiency, addition of a multi-chamber design inside the vessel and placement of the vessel in a horizontal orientation are favorable considerations.
LIST OF TABLES...........................................IV
LIST OF FIGURES...........................................V
1. INTRODUCTION...........................................1
1.1 Hydrogen Energy.......................................1
1.2 Hydride Storage.......................................1
1.2.1 Advantages of metal hydride storage.................2
1.2.2 Hydride absorption and desorption in metal hydrides.2
1.2.3 Hydrogen storage alloys.............................3
1.3 LaNi5-Based Intermetallic Compounds...................5
1.4 Metal Hydride Storage Vessel..........................7
1.5 Purpose and Scope.....................................9
2. EXPERIMENTAL PROCEDURES...............................11
2.1 Experimental Setup...................................11
2.2 Material and Experimental Procedure..................12
3. RESULTS AND DISCUSSION................................14
3.1 Effects of Packing Fraction..........................14
3.2 Effects of Structural Design.........................18
3.3 Effects of Vessel Placement..........................22
4. CONCLUSIONS...........................................26
REFERENCES...............................................28
TABLES...................................................32
FIGUURES.................................................33
1.K. G. Begg, “Implementing the Kyoto Protocol on Climate Change: Environmental Integrity, Sinks and Mechanisms,” Global Environmental Change, Vol. 12, pp. 331-336, 2002.
2.G. A. Karim, “Hydrogen as a Spark Ignition Engine Fuel,” International Journal of Hydrogen Energy, Vol. 28, pp. 569-577, 2003.
3.C. J. Winter, “Hydrogen Energy-Abundant, Efficient, Clean: A Debate over the Energy-System-of-Change,” International Journal of Hydrogen Energy, Vol. 34, pp. S1-S52, 2009.
4.B. Sakintuna, F. Lamari-Darkrim, and M. Hirscher, “Metal Hydride Materials for Solid Hydrogen Storage: A Review,” International Journal of Hydrogen Energy, Vol. 32, pp. 1121-1140, 2007.
5.U. Eberle, G. Arnold, and R. von Helmolt, “Hydrogen Storage in Metal-Hydrogen Systems and Their Derivatives,” Journal of Power Sources, Vol. 154, pp. 456-460, 2006.
6.P. D. Profio, S. Arca, F. Rossi, and M. Filipponi, “Comparison of Hydrogen Hydrates with Existing Hydrogen Storage Technologies: Energetic and Economic Evaluations,” International Journal of Hydrogen Energy, Vol. 34, pp. 9173-9180, 2009.
7.M. Martin, C. Gommel, C. Borkhart, and E. Fromm, “Absorption and Desorption Kinetics of Hydrogen Storage Alloys,” Journal of Alloys and Compounds, Vol. 238, pp. 193-201, 1996.
8.G. D. Sandrock, “A Panoramic Overview of Hydrogen Storage Alloys from a Gas Reaction Point of View,” Journal of Alloys and Compounds, Vol. 293-295, pp. 877-888, 1999.
9.L. Schlapbach and A. Zuttel, “Hydrogen-Storage Materials for Mobile Applications,” Nature, Vol. 414, pp. 353-358, 2001.
10.A. Zuttel, P. Wenger, S. Rentsch, P. Sudan, Ph. Mauron, and Ch. Emmenegger, ”LiBH4 a New Hydrogen Storage Material,” Journal of Power Sources, Vol. 118, pp. 1-7, 2003.
11.A. Zuttel, “Materials for Hydrogen Storage,” Materials Today, Vol. 6, pp. 24-33, 2003.
12.H. Yukawa, K. Nakatsuka, and M. Morinaga, “Design of Hydrogen Storage Alloys in View of Chemical Bond Between Atoms,” Solar Energy Materials and Solar Cells, Vol. 62, pp. 75-80, 2000.
13.E. Akiba and H. Iba, “Hydrogen Absorption by Laves Phase Related BCC Solid Solution,” Intermetallics, Vol. 6, pp. 461-470, 1998.
14.H. Sakaguchi, T. Tsujimoto, and G. Y. Adachi, “The Confinement of Hydrogen in LaNi5 by Poisoning of the Hydride Surface,” Journal of Alloys and Compounds, Vol. 223, pp. 122-126, 1995.
15.J. J. Reilly and G. D. Sandrock, “Hydrogen Storage in Metal Hydrides,” Scientific American, Vol. 242, pp.118-129, 1980.
16.G. Liang, J. Hout, and R. Schulz, “Hydrogen Storage Properties of Mechanically Alloyed LaNi5-Based Materials,” Journal of Alloys and Compounds, Vol. 320, pp. 133-139, 2001.
17.Z. Qi and A. Kaufman, “Activation of Low Temperature PEM Fuel Cells,” Journal of Power Sources, Vol. 111, pp. 181-184, 2002.
18.Y. Ando, T. Tanaka, T. Doi, and T. Takashima, “A Study on a Thermally Regenerative Fuel Cell Utilizing Low-Temperature Thermal Energy,” Energy Conversion and Management, Vol. 42, pp. 1807-1816, 2001.
19.K. H. J. Buschow and H. H. Vanmal, “Phase Relations and Hydrogen Absorption in the Lanthanum-Nickel System,” Journal of the Less-Common Metals, Vol. 29, pp. 203-210, 1972.
20.J. Chen, S. X. Dou, and H. K. Liu, “Effect of Partial Substitution of La with Ce, Pr and Nd on the Properties of LaNi5-Based Alloy Electrodes,” Journal of Power Sources, Vol. 63, pp. 267-270, 1996.
21.J. H. N. V. Vucht, F. A. Kuijpers, and H. C. A. M. Bruning, “Reversible Room-Temperature Absorption of Large Quantities of Hydrogen by Intermetallic Compounds,” Philips Research Reports, Vol. 25, pp. 133-140, 1970.
22.P. D. Goodell, “Cycling Hydriding Response of LaNi5 in Hydrogen Containing Oxygen as a Minor Impurity,” Journal of Less-Common Metals, Vol. 89, pp. 45-54, 1983.
23.P. D. Goodell, “Stability of Rechargeable Hydriding Alloys During Extended Cycling,” Journal of Less-Common Metals, Vol. 99, pp. 1-14, 1984.
24.M. H. Mendelsohn, D. M. Gruen, and A. E. Dwight, “LaNi5-xAlx is a Versatile Alloy System for Metal Hydride Applications,” Nature, Vol. 269, pp. 45-47, 1977.
25.S. Tanaka and T. B. Flanagan, “Thermodynamics of the Solution of Hydrogen in LaNi5 at Small Hydrogen Contents,” Journal of the Less-Common Metals, Vol. 51, pp. 79-91, 1977.
26.O. Boser, “Hydrogen Sorption in LaNi5,” Journal of the Less-Common Metals, Vol. 46, pp. 91-99, 1976.
27.M. I. S. A. Dakka and I. P. Jain, “Comparative Study of Hydrogen in La(28.9)Ni(67.55)Si(3.55) and LaNi5,” International Journal of Hydrogen Energy, Vol. 25, pp. 773-777, 2000.
28.X. Wang, R. Chen, Y. Zhang, C. Chen, and Q. Wang, “Hydrogen Storage Properties of (La-Ce-Ca)Ni5 Alloys and Application for Hydrogen Compression,” Materials Letters, Vol. 61, pp. 1101-1104, 2007.
29.S. Corr?, M. Bououdina, D. Fruchart, G. Adachi, “Stabilisation of High Dissociation Pressure Hydrides of Formula La1-xCexNi5 (x=0-0.3) with Carbon Monoxide,” Journal of Alloys and Compounds, Vol. 275-277, pp. 99-104, 1998.
30.Q. D. Wang, J. Wu, C. P. Chen, and Z. P. Li, ”An Investigation of the Mechanical Behaviour of Hydrogen Storage Metal Beds on Hydriding and Dehydriding and Several Methods of Preventing the Damage of Hydride Containers Caused by the Expansion of Hydrogen Storage Metals,” Journal of the Less-Common Metals, Vol. 131, pp. 399-407, 1987.
31.S. T. McKillip, C. E. Bannister, and E. A. Clark, “Stress Analysis of Hydride Bed Vessels Used for Tritium Storage,” Fusion Technology, Vol. 21, pp. 1011-1016, 1992.
32.T. Saito, K. Suwa, and T. Kawamura, “Influence of Expansion of Metal Hydride During Hydriding-Dehydriding Cycles,” Journal of Alloys and Compounds, Vol. 253-254, pp. 682-685, 1997.
33.K. Nasako, Y. Ito, N. Hiro, and M. Osumi, “Stress on a Reaction Vessel by the Swelling of a Hydrogen Absorbing Alloy,” Journal of Alloys and Compounds, Vol. 264, pp. 271-276, 1998.
34.B. Y. Ao, S. X. Chen, and G. Q. Jiang, “A Study on Wall Stresses Induced by LaNi5 Alloy Hydrogen Absorption-Desorption Cycles,” Journal of Alloys and Compounds, Vol. 390, pp. 122-126, 2005.
35.F. Qin, L. H. Guo, J. P. Chen, and Z. J. Chen, “Pulverization, Expansion of La0.6Y0.4Ni4.8Mn0.2 During Hydrogen Absorption-Desorption Cycles and Their Influences in Thin-Wall Reactors,” International Journal of Hydrogen Energy, Vol. 33, pp. 709-717, 2008.
36.F. Qin, J. P. Chen, and Z. J. Chen, “The Hydriding-Dehydriding Characteristics of La0.6Y0.4Ni4.8Mn0.2 and Their Influences in the Surface Strain on Small-Scale, Thin-Wall and Vertical Containers,” Materials and Design, Vol. 29, pp. 1926-1933, 2008.
37.J. M. Joubert, M. Latroche, R. Cerny, and A. Percheron-Guegan, “Hydrogen Cycling Induced Degradation in LaNi5-Type Meterials,” Journal of Alloys and Compounds, Vol. 330-332, pp. 208-214, 2002.
38.Y.-H. Jhang, “Analysis of Wall Strain on the Reaction Vessel of Mg2Ni Alloy During Cyclic Hydriding/Dehydriding Processes,” M.S. Thesis, National Central University, 2008.
39.C. W. Hsu, private communication, 2011.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔