跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/04/01 16:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳崇齡
研究生(外文):Chung-Ling Chen
論文名稱:疲勞負載之調整對複合積層板動態可靠度效應之研究
論文名稱(外文):Effects of Fatigue Loading Adjustment on the Dynamical Reliability of Composite Laminates
指導教授:王國雄王國雄引用關係
指導教授(外文):Kuo-Shong Wang
學位類別:博士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:160
中文關鍵詞:失效率函數殘留強度公佩茲分佈韋伯分佈線性累積損傷強度與壽命同級假設
外文關鍵詞:residual strengthGompertz distributionWeibull distributionhazard rate functionstrength-life equal rank assumptionlinear damage sum
相關次數:
  • 被引用被引用:3
  • 點閱點閱:139
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究之要旨在探討二階段疲勞負載之調整對複合積層板動態可靠度之影響。本研究主要有四部分。首先,在經過驗證之後,確認以可靠度表示的失效率函數h(R)=eo+c(1-R)^p 稱為(eocp)模型可以有效的描述複合積層板受固定振幅循環應力作用下之動態可靠度。為了研究(eocp)模型對複合積層板受到疲勞負載調整下之特性,運用蒙地卡羅模擬,產生大量在各種負載情形下的疲勞失效資料。第二,基於強度與壽命同級假設定義二個參數-過渡期和可靠度驟降,此二個參數可以分別描述從高到低及從低到高調整疲勞負載對複合積層板可靠度退化之影響。第三,將(eocp)模型在一階段疲勞負載的應用擴展到二階段疲勞負載的情形,使用分段結合過渡期或可靠度驟降的方法來描述動態可靠度的全貌。經估算後發現,在負載從高調整到低的情形,線性累積損傷會大於1;從低到高的情形則會小於1。高階和低階應力的差距越大,則線性累積損傷偏離1的幅度也越大。最後,本研究提出另一個以可靠度表示之失效率函數h(R)=eg+u(-lnR)^q 稱為廣義Gompertz模型。由於此模型之內在缺陷參數eg可以描述材料受負載後之初始失效率,此模型比韋伯失效率函數更具物理意義,而且此模型之應用範圍可以涵蓋韋伯型失效率函數。
This thesis aims to investigate the effects of two-stage fatigue loading adjustment on the dynamical reliability of composite laminates. The major achievements can be divided into four parts. First, the proposed reliability-dependent hazard rate function h(R)=eo+c(1-R)^p named the (eocp) model is verified to be useful for describing the dynamical reliability of composites under constant-amplitude cyclic stress. A large amount of simulated fatigue data are generated to study the characteristics of the (eocp) model for composites subjected to fatigue loading adjustment. Secondly, based on the strength-life equal rank assumption, two parameters, the transition period and reliability drop, are defined to depict the effects of high-low and low-high adjustment, respectively, on the reliability degradation of composites. Thirdly, the application of the (eocp) model for single-stage fatigue loading is extended to two-stage cases, using a piecewise combination with transition period or reliability drop to show the whole picture of dynamical reliability. The linear damage sum is examined and found to be larger than unity for high-low loading, and on the contrary for low-high cases. Bigger the difference between the high and low level stresses results in the larger deviation from unity. Finally, another reliability-dependent hazard rate function h(R)=eg+u(-lnR)^q named generalized Gompertz model is proposed. The proposed model, with the intrinsic weakness parameter eg denoting the initial hazard rate of material under loading, has greater physical meaning than does the Weibull-type hazard rate function. Furthermore, the proposed model could be more flexible in describing the dynamical reliability than the Weibull function.
Contents
摘要..................................................................................................... i

Abstract.............................................................................................. ii

誌謝…................................................................................................. iii

Contents ............................................................................................ iv

List of Figures……………………………………………………… vii

List of Tables………………………………………………………. xi

Nomenclatures…………………………………………………….. xii

Chapter 1 Introduction ..………………………………………... 1
1.1 Classifications of Failure of Composite Laminates…………………… 3
1.2 Literature Survey about Composite Laminate Degradation………… 4
1.3 Literature Survey about Dynamical Reliability and the Models…….. 6
1.4 Basic Assumptions………………………………………………………. 13
1.5 Development of this Study……………….……………………………... 14

Chapter 2 Characteristics of a Hazard Rate Model for
Composites under Cyclic Stresses…………………..
21
2.1 Verification of Model with Experimental Data………………
21
2.2 Correlation between the Model and the S-N Equation………
25
2.3 Yang’s Equation of Residual Strength…………………………………. 29
2.4 Preparation of a Monte Carlo Simulation and its Verification……… 31
2.5 Results of Residual Strength Degradation…………………………….. 35
2.6 Characteristics of Model……………………………………….
36

Chapter 3 Effects of Loading Adjustment on the Reliability Degradation………………………………………….
55
3.1 Residual Strength Distribution under Loading Adjustment………… 55
3.2 Derivation of Transition Period and Reliability Drop………………... 56
3.2.1. Transition Period at the High-low Adjustment………………... 57
3.2.2. Reliability Drop at the Low-high Adjustment………………… 59
3.3 Simulation of Strength and Reliability Degradation………………….. 60
3.3.1. Strength Degradation…………………………………………… 60
3.3.2. Overview of Reliability Degradation…………………………... 62
3.4 Characteristics of Transition Period and Reliability Drop…………... 64

Chapter 4 Piecewise Combination of Hazard Rate Function Based on Model……………………………...
77
4.1 Modification of Parameter after High-low Adjustment…………
77
4.2 Piecewise Combined Hazard Rate Function…………………………... 80
4.3 Mean Fatigue Cycle and Linear Damage Sum………………………... 81
4.4 Results of Simulation…………………………………………………… 83

Chapter 5 Generalized Gompertz Model of Reliability-dependent Hazard Rate Function……..
101
5.1 An extension of hazard rate function for Weibull-type reliability…… 101
5.2 Verification with Simulated Data……………………………………… 108
5.3 Fit of the Model with Some Experimental data………………………. 110
Chapter 6 Conclusion…………………………………………… 129
References.......................................................................................... 133
Appendix............................................................................................ 141
References
[1] J. N. Yang and D. L. Jones, “Effect of load sequence on the statistical fatigue of composites”, AIAA J, Vol. 18(12), pp. 1525–1531, 1980.
[2] J. N. Yang and D. L. Jones, “Load sequence effects on the fatigue of unnotched composites laminates”, In: Lauraitis KN, editor, Fatigue of fibrous composite materials, ASTM STP, 723, Philadelphia: American Society for Testing and Materials, pp. 213-232, 1981.
[3] J. N. Yang and D. L. Jones, “Load sequence effects on graphite/epoxy [G35]2s” In: O’Brien TK, editor, Long term behavior of composites, ASTM STP, 813, Philadelphia: American Society for Testing and Materials, pp.246–262, 1983.
[4] L. J. Broutman and S. A. Sahu, “A new theory to predict cumulative fatigue damage in fiberglass reinforced plastics”, Composite materials: testing and design (second conference), ASTM STP, 497, Philadephia: American Society for Testing and Materials, pp.170–188, 1972.
[5] E. K. Gamstedt and B. A. Sj gren, “An experimental investigation of the sequence effect in block amplitude loading of cross-ply composite laminates”, International Journal of Fatigue, Vol. 24, pp. 437–446, 2002.
[6] M. S. Found and M. Quaresimin, “Two-stage loading of woven carbon fibre reinforced laminates”, Fatigue & Fracture of Engineering Materials & Structures, Vol. 26, pp.17–26, 2003.
[7] K. Han and M. Hamdi, “Fatigue life scattering of RP/C”, 38th Annual RP/CI, SPI 1983.
[8] W. Hwang and K. S. Han, “Cumulative damage models and multi-stress fatigue life prediction”, Journal of Composite Materials, Vol. 20, pp. 125-153, 1986.
[9] J. Degrieck and W. Van Paepegem, “Fatigue damage modeling of fibre-reinforced composite materials: review”, Applied Mechanics Reviews, Vol. 54, No. 4, pp. 279-300, 2001.
[10] N. L. Post, S. W. Case and J. J. Lesco, “Modeling the variable amplitude fatigue of composite materials: a review and evaluation of the state of the art for spectrum loading”, International Journal of Fatigue, Vol. 30, pp. 2064-2086, 2008.
[11] M. J. Salkind, “Fatigue of composites”, Composite materials: testing and design (second conference), ASTM STP, 497, Baltimore, American Society for Testing and Materials, pp.143-169, 1972.
[12] O. Konur and F. L. Matthews, “Effect of the properties of the constituents on the fatigue performance of composites: a review”, Composites, Vol. 20, no.4, pp. 317-328, 1989.
[13] K. L. Reifsnider, E. G. Henneke, W. W. Stinchcomb and J. C. Duke, “Damage mechanics and NDE of composite laminates”, In Hashin Z, Herakovich CT. editors, Mechanics of composite materials: recent advances, Pergamon Press, New York, pp. 399-420, 1983.
[14] K. W. Kang and J. K. Kim, “Fatigue life prediction for impacted carbon/epoxy laminates under 2-stage loading”, Composites Part A: Applied Science and Manufacturing, Vol. 37, no. 9, pp. 1451-1457, 2006.
[15] Rao S. S., Reliability-based design., McGraw-Hill Inc., New York, 1992.
[16] J. C. Halpin, T. A. Johnson and M. E. Waddups, “Kinetic fracture models and structural reliability” International Journal of Fracture Mechanics, Vol 8, pp. 465–468, 1972.
[17] K. L. Reifsnider, “The critical element model: a modeling philosophy”, Engineering Fracture Mechanics, Vol. 25, pp.739–749, 1986.
[18] K. L. Reifsnider and W. W. Stinchcomb, “A critical element model of the residual strength and life of fatigue-loaded composite coupons”, Composite Materials: Fatigue and Fracture, ASTM STP, 907, pp. 298–313, 1986.
[19] A. Charewicz and I. M. Daniel, “Damage mechanisms and accumulation in graphite/epoxy laminates”, Composite Materials: Fatigue and Fracture, ASTM STP, 907, pp. 274–297, 1986.
[20] H. T. Hahn and R. Y. Kim, “Proof testing of composite materials”, Journal of Composite Materials, Vol. 9, pp. 297–311, 1975.
[21] P. C. Chou and R. Croman, “Residual strength in fatigue based on the strength-life equal rank assumption”, Journal of Composite Materials, Vol. 12, pp. 177–194, 1978.
[22] J. N. Yang and M. D. Liu, “Residual strength degradation model and theory of periodic proof tests for graphite/epoxy laminates”, Journal of Composite Materials, Vol. 11, pp. 176-203, 1977.
[23] J. N. Yang, “Fatigue and residual strength degradation for graphite/epoxy composites under tension-compression cyclic loading”, Journal of Composite Materials, Vol. 12, pp. 19-39, 1978.
[24] J. N. Yang and C. T. Sun, “Proof test and fatigue of unnotched composite laminates”, Journal of Composite Materials, Vol. 14, pp. 168-176, 1980.
[25] Sendeckyj G. P. “Life prediction for resin–matrix composite materials”, Composite material series, 4. Elsevier, p.431–483, 1991.
[26] T. Adam, R. F. Dickson, C. J. Jones, H. Reiter and B. Harris, “A power law fatigue damage model for fiber-reinforced plastic laminates”, Proceedings of the Institution of Mechanical Engineers, Vol. 200(C3), pp. 155–166, 1986.
[27] M. Sutcu and W. B. Hillig, “The effect of fiber-matrix debond energy on the matrix cracking strength and the debond shear strength”, Acta Metallurgica, Vol. 38, No. 12, pp. 2653-2662, 1990.
[28] Y. C. Chiang, “Mechanics of matrix cracking in bonded composite”, Journal of Mechanics, Vol. 23, pp. 95-106, 2007.
[29] T. P. Philippidis and V. A. Passipoularidis, “Residual strength after fatigue in composites: theory vs. experiment”, International Journal of Fatigue, Vol. 29, no. 12, pp. 2104-2116, 2007.
[30] K. S. Wang, “Study of hazard rate function on the cumulative damage phenomenon”, Journal of Mechanics, Vol. 27, no. 1, pp. 47-55, 2011.
[31] K. S. Wang, S. T. Chang and Y. C. Shen, “Dynamic reliability models for fatigue crack growth problem”, Engineering Fracture Mechanics, Vol. 54, pp. 543-556, 1996.
[32] K. S. Wang, E. H. Wan and W. C. Yang, “A preliminary investigation of new mechanical product development based on reliability theory”, Reliability Engineering & System Safety, Vol. 40, pp. 187-194, 1993.
[33] K. S. Wang, C. S. Chen and J. J. Huang, “Dynamic reliability behavior for sliding wear of carburized steel”, Reliability Engineering & System Safety, Vol. 58, no.1, pp. 31-41, 1997.
[34] K. S. Wang, F. S. Hsu, H. L. Chang, “Investigation of cumulative damage based on the reliability”, Journal of Mechanics, Vol. 16, pp. 131-139, 2000.
[35] K. S. Wang, F. S. Hsu and P. P. Liu, “Modeling the bathtub shape hazard rate function in terms of reliability”, Reliability Engineering & System Safety, Vol. 75, pp. 397-406, 2002.
[36] K. S. Wang, W. S. Lin and F. S. Hsu, “A new approach for determining the reliability of cutting tool”, The International Journal of Advanced Manufacturing Technology, Vol. 17, pp. 705-709, 2001.
[37] K. S. Wang and Y. C. Shen, “Fatigue life prediction for metal constant average stress”, Journal of Mechanics, Vol. 13, pp. 245-254, 1997.
[38] Y. C. Shen, “Study of Cumulative Damage based on Fatigue Reliability”, Ph.D. thesis, Dept. of Mechanical Engineering, National Central University, Taiwan, ROC, 1997.
[39] K. S. Wang and W. E. Liu, Y. H. Yang and C. L. Chen, “Investigation of hazard rate as a constant difference and constant ratio of reliability”, The 32-nd National Conference of Chinese Society of Mechanical Engineering, Taiwan, ROC, 2008.
[40] K. S. Wang, E. C. Shih, H. R. Pao and Y. C. Shen, “Comparison of cumulative failure rate with Weibull-typed distribution”, National Conference of Mechanics, Taiwan, 2000.
[41] C. P. Winsor, “The Gompertz curve as a growth curve”, Proceedings of the
National Academy of Sciences, Vol. 18, pp. 1-8, 1932.
[42] S. Tanaka, M. Ichikawa and S. Akita, “A probabilistic investigation of fatigue life and cumulative cycle ratio”, Engineering Fracture Mechanics, Vol. 20, No. 3, pp. 501-513, 1984.
[43] J. L. Bogdanoff, “A new cumulative damage model, Part 1.” Journal of Applied
Mechanics, Vol. 45, no. 2, pp.246–250, 1978.
[44] K. S. Wang and Y. C. Shen and J. J. Huang, “Loading adjustment for fatigue problem based on reliability consideration”, International Journal of Fatigue, Vol. 19, no. 10, pp. 693–702, 1997.
[45] K. Ni and S. Zhang, “Fatigue reliability analysis under two-stage loading”, Reliability Engineering & System Safety, Vol. 68, pp. 153-158, 2000.
[46] J. C. Halpin, K. L. Jerina and T. A. Johnson, “Characterization of composites for the purpose of reliability evaluation”, In: Analysis of the test methods for high modulus fibers and composites, ASTM STP, 521, American Society for Testing and Materials, pp. 5-64, 1973.
[47] Y. C. Shih, “Study of the relation between cumulative failure and reliability”, MS thesis, Dept. of Mechanical Engineering, National Central University, Taiwan, ROC, 2000.
[48] Siddall J. N., Probabilistic engineering design principles and applications, Marcel Dekker, New York, 1983.
[49] J. F. Mandell and D. D. Samborsky, DOE/MSU Fatigue of composite materials database 2009 update.
(www.sandia.gov/wind/other/973002upd0309.pdf).
[50] Kapur K. C. and Lamberson L. R., Reliability in engineering design., John Wiley & Sons, New York, 1997.
[51] J. H. Chen, “Application of high-low loading adjustment on the degraded composites”, MS thesis, Dept. of Mechanical Engineering, National Central University, Taiwan, ROC, 2010.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 鄭欽龍、古曉燕 (1999) 社區林經營與公眾參與。中華林學季刊 32(1):79-89。
2. 鄭欽龍、古曉燕 (1999) 社區林經營與公眾參與。中華林學季刊 32(1):79-89。
3. 陳美惠、李來錫、洪士惟 (2009) 社區林業組織發展的知識演進研究。中華林學季刊 42(1):107-122。
4. 陳美惠、李來錫、洪士惟 (2009) 社區林業組織發展的知識演進研究。中華林學季刊 42(1):107-122。
5. 陳美惠、李來錫、洪士惟 (2009) 社區林業組織發展的知識演進研究。中華林學季刊 42(1):107-122。
6. 陳美惠、李來錫、洪士惟 (2009) 社區林業組織發展的知識演進研究。中華林學季刊 42(1):107-122。
7. 陳美惠、林晉戎 (2006) 台灣社區林業之執行內容與經營方向分析。臺灣林業 32 (2) : 11-18。
8. 陳美惠、林晉戎 (2006) 台灣社區林業之執行內容與經營方向分析。臺灣林業 32 (2) : 11-18。
9. 陳美惠、林晉戎 (2006) 台灣社區林業之執行內容與經營方向分析。臺灣林業 32 (2) : 11-18。
10. 陳美惠、林晉戎 (2006) 台灣社區林業之執行內容與經營方向分析。臺灣林業 32 (2) : 11-18。
11. 林如森 (2003) 社區林業推廣傳播策略之探討-以雲林縣湖本社區為例。中華林學季刊 37(2):181-193。
12. 林如森 (2003) 社區林業推廣傳播策略之探討-以雲林縣湖本社區為例。中華林學季刊 37(2):181-193。
13. 林如森 (2003) 社區林業推廣傳播策略之探討-以雲林縣湖本社區為例。中華林學季刊 37(2):181-193。
14. 林如森 (2003) 社區林業推廣傳播策略之探討-以雲林縣湖本社區為例。中華林學季刊 37(2):181-193。
15. 王鴻濬 (2003) 從人類生態學到人類生態系統理論-兼論社區林業的發展與挑戰。臺灣林業 29 (2): 53-61。