(3.235.41.241) 您好!臺灣時間:2021/04/11 22:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡銘浩
研究生(外文):Ming-Hau Tsai
論文名稱:干擾降低架構於延遲系統控制之研究
論文名稱(外文):A Study on Adaptive Disturbance Reduction Schemes for Delay Systems
指導教授:董必正董必正引用關係
指導教授(外文):Pi-Cheng Tung
學位類別:博士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:120
中文關鍵詞:時間延遲干擾估測器改良型Smith 估測器干擾降低類神經演算法
外文關鍵詞:disturbance reductiondisturbance observermodified Smith predictortime delayartificial neural network
相關次數:
  • 被引用被引用:0
  • 點閱點閱:186
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文提出兩種具有適應性的外力干擾降低架構,而此兩架構可降低未知的低頻外力干擾對線性微小延遲系統的影響。第一種架構是利用類神經演算法的概念設計而成。第二種架構中包含輸入干擾降低控制器與殘餘干擾降低控制器。輸入干擾降低控制器可以降低未知低頻外力干擾與系統不確定項的影響。因為輸入干擾無法完全經由輸入干擾降低控制器消除,所以殘餘的外力干擾則經由殘餘干擾降低控制器處理。不同於常見的干擾消除方法,提出的兩個架構在處理外力干擾時,不需要估測得到任何外力干擾的資訊,例如,外力干擾的頻率。此外,本篇論文提出的兩種外力干擾降低架構可與改良型Smith估測器分別作結合,以得到更佳的性能於微小延遲系統的控制上。而且,提出的控制架構可在微小延遲系統中降低週期或非週期的低頻外力干擾。
This dissertation proposes two adaptive disturbance reduction schemes for linear small delay systems with unknown low-frequency load disturbances. One of the proposed disturbance reduction schemes is based on an artificial neural network (ANN). The artificial-neural-network disturbance reduction controller (ANNDRC) is proposed for small delay systems with unknown low-frequency load disturbances. Another proposed scheme contains an input disturbance reduction controller (IDRC) and a residual disturbance reduction controller (RDRC). The IDRC using the ANN is used to reduce the unknown low-frequency load disturbances and modeling uncertainties. Residual disturbances and residual uncertainties are reduced by the RDRC based on a disturbance observer. Unlike other methods, both of the proposed schemes do not require disturbance frequencies to be known. The proposed schemes are respectively applied to a modified Smith predictor for the control of small delay systems. Simulation examples are illustrated to show the effectiveness of the proposed disturbance reduction schemes for linear small delay uncertain systems with periodic or non-periodic unknown low-frequency load disturbances.
摘要 I
Abstract II
致 謝 III
Contents IV
Figure Captions VI
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature survey 3
1.3 Organization of this dissertation 7
Chapter 2 Rejection of periodic load disturbances 8
2.1 Outline of this chapter 8
2.2 Problem statement involved in periodic load disturbances 8
2.3 Common methods for the load disturbance rejection 9
2.3.1 Internal model principle (IMP) 9
2.3.2 Adaptive feedforward cancellation (AFC) 11
2.3.3 Equivalence between the IMP and the AFC methods 13
Chapter 3 Adaptive disturbance reduction schemes 16
3.1 Outline of this chapter 16
3.2 Adaptive disturbance reduction scheme 1 16
3.2.1 Convergence of ANN 23
3.3 Adaptive disturbance reduction scheme 2 23
3.3.1 Input disturbance reduction controller (IDRC) 24
3.3.2 Residual disturbance reduction controller (RDRC) 32
3.3.3 The combination of the IDRC and the RDRC 34
Chapter 4 Modified Smith predictor with proposed disturbance reduction schemes for small delay systems 36
4.1 Outline of this chapter 36
4.2 Original Smith predictor and its modification 36
4.3 Modified Smith predictor with proposed disturbance reduction schemes 41
Chapter 5 Simulation results 44
5.1 Outline of this chapter 44
5.2 Modified Smith predictor with ANNDRC 44
5.3 Modified Smith predictor with IDRC 60
5.4 Modified Smith predictor with the IDRC and the RDRC 77
Chapter 6 Conclusions 95
Appendix A 97
Appendix B 102
Appendix C 107
References 110
Publications 119
[1] Q. Zheng, Z. Z. Chen and Z. Q. Gao, “A practical approach to disturbance decoupling control”, Control Engineering Practice, vol. 17, pp. 1016-1025, 2009.
[2] Q. Zheng, L. L. Dong, D. H. Lee and Z. Q. Gao, “Active disturbance rejection control for MEMS gyroscopes”, IEEE Transactions on Control Systems Technology, vol. 17, pp. 1432-1438, 2009.
[3] S. H. Hu and Z. Q. Gao, “A two-degree-of-freedom time-optimal solution for hard disk drive servo problems”, International Journal of Adaptive Control and Signal Processing, vol. 22, pp. 388-401, 2008.
[4] L. L. Dong, Q. Zheng and Z. Q. Gao, “On control system design for the conventional mode of operation of vibrational gyroscopes”, IEEE Sensor Journal, vol. 8, pp. 1871-1878, 2008.
[5] R. H. Horng, H. L. Chou and A. C. Lee, “Rejection of limit cycles induced from disturbance observers in motion control”, IEEE Transactions on Industrial Electronics, vol. 53, pp. 1770-1780, 2006.
[6] A. C. Lee, Y. R. Pan and Y. Y. Huang “Robust observer-controller compensator design using the loop shaping design procedure and the algebraic method”, International Journal of Robust and Nonlinear Control, vol. 20, pp. 1176-1196, 2010.
[7] A. C. Lee, Y. R. Pan and M. T. Hsieh “Output disturbance observer structure applied to run-to-run control for semiconductor manufacturing”, IEEE Transactions on Semiconductor Manufacturing, vol. 24, pp. 27-43, 2011.
[8] B. Francis and B. Wonham, “The internal model principle of control theory”, Automatica, vol. 12, pp. 457-465, 1976.
[9] H. S. Na and Y. Park, “An adaptive feedforward controller for rejection of periodic disturbances”, Journal of Sound and Vibration, vol. 201, pp. 427-435, 1997.
[10] M. F. Byl, S. J. Ludwick and D. L. Trumper, “A loop shaping perspective for tuning controllers with adaptive feedforward cancellation”, Precision Engineering, vol. 29, pp. 27-40, 2005.
[11] H. S. Lee, “Implementation of adaptive feedforward cancellation algorithms for pre-embossed rigid magnetic disks”, IEEE Transactions on Magnetics, vol. 33, pp. 2419-2423, 1997.
[12] M. Bodson, “Rejection of periodic disturbances of unknown and time-varying frequency”, International Journal of Adaptive Control and Signal Processing, vol. 19, no. 2-3, pp. 67-88, Mar-Apr, 2005.
[13] M. Bodson, A. Sacks and P. Khosla, “Harmonic generation in adaptive feedforward cancellation schemes”, IEEE transactions on Automatic Control, vol. 39, no. 9, pp. 1939-1944, Sept, 1994.
[14] W. Messner and M. Bodson, “Design of adaptive feedforward algorithms using internal model principle”, International Journal of Adaptive Control and Signal Processing, vol. 9, no. 2, pp. 199-212, Mar, 1995.
[15] K. S. Narenda and K. Parthasarathy, “Identification and control of dynamical systems using neural networks”, IEEE Transactions on Neural Networks, vol. 1, pp. 4-27, 1990.
[16] T. Fukuda and T. Shibata, “Theory and applications of neural networks for industrial control systems”, IEEE Transactions on Industrial Electronics, vol. 39, pp. 472-489, 1992.
[17] C. C. Ku and K. Y. Lee, “Diagonal recurrent networks for dynamic systems control”, IEEE Transactions on Neural Networks, vol. 6, pp. 144–156, 1995.
[18] A. Balestrino, F. B. Verona and A. Landi, “On-line process estimation by ANNs and Smith controller design”, IEE Proceedings Control Theory and Applications, vol. 145, no. 2, pp. 231–235, 1998.
[19] J. Q. Huang, and F. L. Lewis, “Neural-network predictive control for nonlinear dynamic systems with time-delay”, IEEE Transactions on Neural Networks, vol. 14, no. 2, pp.377-389, 2003.
[20] M. B. Han, J. Xi and K. Hirasawa, “Universal learning network and its application for nonlinear system with long time delay”, Computers and chemical engineering, vol. 31, no. 1, pp. 13-20, 2006.
[21] C. H. Lu and C. C. Tsai, “Adaptive predictive control with recurrent neural network for industrial processes: an application to temperature control of a variable-frequency oil-cooling machine”, IEEE Transactions on Industrial Electronics, vol. 55, no. 3, pp. 1366–1375, 2008.
[22] X. M. Ren and A.B. Rad, “Adaptive non-linear compensation control based on neural networks for non-linear systems with time delay”, International Journal of Systems Science, vol. 40, no. 12, pp. 1283–1292, 2009.
[23] J. Na, X. M. Ren, Y. Gao, G. Robert and C. C. Ramon, “Adaptive neural network state predictor and tracking control for nonlinear time-delay systems”, International Journal of Innovative Computing, Information and Control, vol. 6, no. 2, pp. 627-639, 2010.
[24] K. Ohnishi and K. Miyachi, “Adaptive DC servo drive control taking force disturbance suppression into account”, IEEE Transactions on Industry Applications, vol. 24, pp. 171-176, 1988.
[25] T. Umeno and Y. Hori, “Robust speed control of DC servomotor using modern two degrees-of-freedom controller design”, IEEE Transaction on Industrial Electronics, vol. 38, pp. 363-368, 1991.
[26] T. Umeno, T. Kaneko and Y. Hori, “Robust servosystem design with two degrees of freedom and its applications to novel motion control of robot manipulators”, IEEE transaction on Industrial Electronics, vol. 40, pp.473-485, 1993.
[27] M. Iwasaki and N. Matsui, “Robust speed control of IM with torque feedforward control”, IEEE Transaction on Industrial Electronics, vol. 40, pp. 553-560, 1993.
[28] H. Kichul and N. Kwanghee, “A load torque compensation scheme under the speed measurement delay”, IEEE Transactions on Industrial Electronics, vol. 45, pp. 283-290, 1998.
[29] R. W. Jones and M. T. Tham, “Disturbance observer design for continuous systems with delay”, Asia-Pacific Journal Chemical Engineering, vol. 2, pp. 517-525, 2007.
[30] Q. C. Zhong and J. E. Normey-Rico, “Control of integral processes with dead-time. Part 1: Disturbance observer-based 2DOF control scheme”, IEE Proceedings-Control Theory Applications, vol. 149, no. 4, pp. 285-290, 2002.
[31] J. P. Richard, “Time-delay system: an overview of some recent advances and open problems”, Automatica, vol. 39, pp. 1667-1694, 2003.
[32] K. Watanabe and M. Ito, “A process-model control for linear systems with delay”, IEEE Transactions on Automatic Control, vol. 26, pp. 1261-1269, 1981.
[33] O. J. Smith, “A controller to overcome dead time”, ISA Journal, vol. 6, pp. 28-33, 1959.
[34] Y. C. Tian and F. Gao, “Double-controller scheme for control of processes with dominant delay”, IEE Proceedings-Control Theory Applications, vol. 145, pp. 479-484, 1998.
[35] C. C. Hang, F. S. Wong, “Modified Smith predictors for the control of processes with dead time”, Proceeding of ISA Annual Conference, vol. 34, pp. 33-44, 1979.
[36] K. J. Astrom, C. C. Hang and B. C. Lim, “A new smith predictor for controlling a process with an integrator and long dead-time”, IEEE Transactions on Automatic Control, vol. 39, pp. 343-345, 1994.
[37] M. R. Matausek and A. D. Micic, “On the modified Smith predictor for controlling a process with an integrator and long dead time”, IEEE Transactions on Automatic Control, vol. 44, pp. 1603-1606, 1999.
[38] I. L. Chien, S. C. Peng and J. H. Liu, “Simple control method for integration processes with long deadtime”, Journal of Process Control, vol. 12, pp. 391-404, 2002.
[39] G. Saravanakumar, R. S. D. Wahidabanu and C. G. Nayak, “Design and analysis of modified Smith predictors for self-regulating and non-self regulating processes with dead time”, Journal of Instrumentation, vol. 2, article no. 08008, 2007.
[40] D. Zheng, J. A. Fang and Z. Y. Ren, “Modified Smith predictor for frequency identification and disturbance rejection of single sinusoidal signal”, ISA Transactions, vol. 49, pp. 95-105, 2010.
[41] Y. D. Chen, P. C. Tung and C. C. Fuh, “Modified Smith predictor scheme for periodic disturbance reduction in linear delay systems”, Journal of Process Control, vol. 17, pp. 799-804, 2007.
[42] T. Takehara, T. Kunitake, H. Hashimoto and F. Harachima, “The control for the disturbance in the system with time delay”, International Workshop on Advanced Motion Control, vol. 1, pp. 349-353, 1996.
[43] K. J. Astrom and B. Wittenmark, Adaptive Control, Addison-Wesley Publishing Company: Reading, MA, 1995.
[44] S. Sastry and M. Bodson, Adaptive control, Stability, Convergence, and Robustness., Prentice-Hall: Englewood Cliffs, NJ, 1989.
[45] B. Widrow and S. D. Stearns, Adaptive Signal Processing., Prentice-Hall: Englewood Cliffs, NJ, 1985.
[46] N. J. Bershad and J. C. Bernudez, “Sinusoidal interference rejection analysis of an LMS adaptive feedforward controller with a noisy periodic reference”, IEEE Transaction on Signal Processing, vol. 46, no. 5, pp. 1298-1313, 1998.
[47] C. Y. Chang and K. K. Shyu, “Active noise cancellation with a fuzzy adaptive filtered-X algorithm”, IEE Proceedings: Circuits, Devices, and Systems, vol. 150, no.5, pp. 416-422, 2003.
[48] D. S. Bayard, “A modified augment error algorithm for adaptive noise cancellation in the presence of plant resonances”, Proceedings of the American Control Conference, pp. 137-141, 1998.
[49] R. C. Dorf and R. H. Bishop, Modern control systems, Prentice-Hall: Upper Saddle River, NJ, 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔