(3.238.88.35) 您好!臺灣時間:2021/04/19 01:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:朱天鈞
研究生(外文):Tien-Chun Chu
論文名稱:焚化飛灰與電弧爐集塵灰共熔轉換微晶玻璃材料之特性與結晶動力學研究
論文名稱(外文):Characterization and Crystallization Kinetics of glass-ceramics prepared from a mixture of MSWI fly ash and EAF dust
指導教授:王鯤生
指導教授(外文):Kuen-Sheng Wang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:224
中文關鍵詞:預成核焚化飛灰結晶動力學微晶玻璃再結晶玻璃化
外文關鍵詞:Pre-nucleationIncinerator fly ashCrystallization kineticsGlass-ceramicRecrystallizationVitrification
相關次數:
  • 被引用被引用:4
  • 點閱點閱:201
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來都市垃圾焚化飛灰及電弧爐集塵灰為有害事業廢棄物之大宗,急待妥善處理與資源化。本研究係結合玻璃化/再結晶處理技術,選用都市垃圾焚化飛灰、電弧爐集塵灰及廢玻璃作為初始原料,分別進行調質熔融程序、控制結晶熱處理程序,以及非等溫模式的熱差分析(DTA)程序,評估熔渣玻璃的再結晶作用行為及反應動力參數,以探討調質灰渣處理轉換成微晶玻璃材料之可行性。研究結果顯示,當混合調質配比為(60wt.%)焚化飛灰-(20wt.%)廢玻璃-(20wt.%)電弧爐集塵灰時,熔渣玻璃已具適當的玻璃形成能力、化學耐久性及較高的再結晶趨勢。由預成核試驗結果得知,最大成核速率溫度發生在700°C,最佳的成核處理時間為30min;在較低晶體成長溫度(750-850°C),主要結晶礦物相為鈣鋁黃長石(Gehlenite, Ca2Al2SiO7)和鈣鎂黃長石(Akermanite, Ca2MgSi2O7)固溶體,次要結晶礦物相則為透輝石和鈣鐵輝石固溶體(diopside–hedenbergite solid solutions-Ca(FeMg)Si2O6),而當結晶溫度超過900°C 時,逐漸會有第三結晶礦物相鈣鉻榴石(Uvarovite, Ca3Cr2(SiO4)3)產生。結晶動力學分析結果,未預成核的調質熔渣玻璃,其結晶活化能為367.4-395.2 kJ/mol,Avrami constant=1.8;預成核的調質熔渣玻璃,其結晶活化能為199.8-214.6 kJ/mol,Avrami constant=1.5;兩者的結晶活化能差距甚大,證明本調質熔渣玻璃適用於二階段的成核-晶體成長之熱處理方法。微晶玻璃性能分析結果,較高的晶體長溫度(950-1000°C),具有較優異的微結構特徵、重金屬溶出特性、化學耐久性以及機械性質,鹼骨材反應判斷也都皆落在無害區域內,可廣泛運用在建築結構或裝飾材料上,為具高度資源化價值之環保材料。
Municipal incinerator fly ash (MSWI fly ash) and electeric arc furnace dust (EAF dust) account for the main of the industrial hazadours waste in the past decade. For environmental concerns, the safe treatment and recycling of such waste has been in great demand in the nation. This study explores the properties of glass-ceramic prepared by combined vitrification/recrystallization approach from a mixture of MSWI fly ash, EAF dust and waste glass cullet. The experimental procedures involving the modification of fly ash and controlled crystallization heat-treatments were performed to convert modified ash into useful glass-ceramic composites. The re-crystallization behavior and kinetics of a waste-derived glass-ceramic was evaluated under non-isothermal conditions using differential thermal analysis (DTA).
With respect to the modification of MSWI fly ash compositions, it was found that a relatively stable slag-derived glass with suitable glass-forming ability, chemical durability and higher the re-crystallization tendency could be obtained by mixing 60 wt.% MSWI fly ash, 20 wt.% EAF dust, and 20 wt.% waste glass cullet.
Pre-nucleation experimental results indicated that the temperature and time of maximum nucleation rate were 700 oC and 30 min, respectively. The crystallographic and microstructural analysis of the produced glass-ceramic that nucleated at 700 oC for 30 min and crystallized at 750-1000 oC for 1 h, revealed the presence of three major crystalline phases, melilite (gehlenite (Ca2Al2SiO7)-akermanite (Ca2MgSi2O7) solid solutions), augite (diopside–hedenbergite solid solutions, Ca(Mg,Fe)Si2O6) and uvarovite (Ca3Cr2(SiO4)3) together with an equiaxed grain morphology that was embedded in the glassy matrix. But third crystalline phase of uvarovite begins to appear at crystallization treatment temperature of above 900°C and the amount of augite and uvarovite increased with increasing crystallization temperature.
The activation energies (Ec) of the crystallization of the annealed and pre-nucleated glass samples, determined by modified Kissinger and Ozawa equations, were in the range of 367.4-395.2 and 199.8-214.6 kJ/mol, respectively, and the obtained Avrami constant (n) was 1.8 for the annealed glass and 1.5 for the pre-nucleated glass. These results verify that the difference between the Ec values of the annealed and pre-nucleated glasses is very significant, suggesting that mixed ash-based glass is suitable for use in the two-stage crystallization thermal-treatment in this study.
The best physical, microstructural, mechanical and chemical durability properties of the glass-ceramic were produced at 950-1000°C for 1 hour heat-treatment, making them suitable for use as construction and decoration materials.
中文摘要 i
英文摘要 ii
目錄 iv
圖目錄 vii
表目錄 x
第一章 前言 1
1-1 研究緣起與目的 1
1-2 研究內容 3
第二章 文獻回顧 4
2-1 都市垃圾焚化飛灰 4
2-1-1 都市垃圾焚化飛灰種類及來源 4
2-1-2 都市垃圾焚化飛灰產量 7
2-1-3 都市垃圾焚化飛灰特性 8
2-1-4 都市垃圾焚化飛灰處理現況 13
2-2 煉鋼廠電弧爐集塵灰 15
2-2-1 電弧爐集塵灰來源及產量 15
2-2-2 電弧爐集塵灰特性 18
2-2-3 國內外電弧爐集塵灰回收處理技術 20
2-3 熔融玻璃化法 25
2-3-1 熔融處理原理及應用 25
2-3-2 熔融玻璃化作用 29
2-3-3 玻璃形成理論 31
2-3-4 熔融玻璃化處理之操作因子 38
2-3-5 熔融玻璃化處理效應之指標 43
2-3-6 熔渣種類及特性 47
2-3-7 熔渣資源化與再利用 48
2-3-8 鹼-骨材反應 50
2-4 微晶玻璃材料 53
2-4-1 微晶玻璃的背景介紹 53
2-4-2 微晶玻璃的製造原理 54
2-4-3 微晶玻璃的再結晶理論 58
2-4-3-1成核機制 58
2-4-3-2成核動力學 59
2-4-3-3結晶成長機制 62
2-4-3-4結晶動力學 63
2-4-4 廢棄物製成微晶玻璃之操作因子 69
2-4-5 國內外利用廢棄物製成微晶玻璃之相關研究 76
第三章 實驗材料與方法 82
3-1 研究架構 82
3-2 實驗材料與設備 84
3-2-1 實驗材料 84
3-2-2 實驗設備 85
3-3 實驗設計與流程 87
3-3-1 原物料前處理與基本特性分析 87
3-3-2 焚化飛灰調質熔融玻璃化特性試驗 88
3-3-3 調質熔渣玻璃結晶化熱處理程序試驗 90
3-3-4 調質熔渣玻璃DTA熱分析試驗 91
3-4 實驗條件配置說明 96
3-4-1 原物料前處理 96
3-4-2 焚化飛灰調質熔融玻璃化試驗條件配置 96
3-4-3 調質熔渣玻璃結晶化熱處理試驗條件配置 98
3-4-4 調質熔渣玻璃DTA分析操作條件 100
3-5 實驗分析 102
3-5-1 主要分析儀器 102
3-5-2 分析方法 104
第四章 結果與討論 116
4-1 原物料基本特性分析 116
4-1-1 物化性質 116
4-1-2 化學組成分析 120
4-1-3 重金屬總量與毒性特性溶出試驗 123
4-1-4 物種型態與微觀結構 124
4-2 調質程序對熔渣玻璃性質之影響 129
4-2-1 調質灰熔融玻璃化效應評估 129
4-2-2 調質熔渣玻璃之基本性質分析 140
4-2-3 調質熔渣玻璃之化學耐久性分析 147
4-2-4 調質熔渣玻璃之熱穩定分析 158
4-2-5 小結 162
4-3 再結晶程序對調質熔渣玻璃性質之影響 163
4-3-1 調質熔渣玻璃之最佳預成核條件分析 163
4-3-2 調質熔渣玻璃之晶體成長條件分析 169
4-3-3 再結晶調質熔渣玻璃之性能分析 174
4-3-4 小結 182
4-4 結晶動力學解析 183
4-4-1 退火玻璃和預成核玻璃之DTA分析 183
4-4-2 退火玻璃和預成核玻璃之Avrami (n)參數分析 185
4-4-3 退火玻璃和預成核玻璃之結晶活化能分析 187
4-4-4 小結 190
第五章 結論與建議 191
5-1 結論 191
5-2 建議 196
參考文獻 197
Alba, N., Gasso, E., Vazquez, S. Gasso and Baldasano, J. M., “Stabilization/solidification of MSW incineration residues from facilities with different air pollution control systems. Durability of matrices versuscarbonation”, Waste Management, Volume: 21, pp. 313-323, 2001.
Appen, A.A., “The Chemistry of Glasses” (in Russian). Himiq, Leningrad, 1974.
Arjunan, P., Michael, R. and Della M. Roy, “Silfoaluminate-belite cement from low-calcium fly ash and sulfur-rich and other industrial by-products”, Cement and concrete research, Volume:29, No. 8, pp.1305-1311, 1999.
Avrami M., “Kinetics of phase change.Ι. General theory”., J Chem Physiol., 7:1103Y1112, 1939.
Avrami M., “Kinetics of phase change.ΙΙ. Transformation-time relations for random distribution of nuclei”., J Chem Physiol., 8:212Y224, 1940.
Barbieri, L., Bonamartini, A.C., Lancellotti ,I., “Alkaline and alkaline-earth silicate glasses and glass-ceramics from municipal and industrial wastes”, Journal of the European Ceramic Society. 20, 2477-2483, 2000.
Barbieri, L., Karamanov, A., Corradi, A., Lancellotti, I., Pelino, M., Rincon, J. Ma., “Structure, chemical durability and crystallization behavior of incinerator-based glassy systems”, Journal of Non-Crystalline Solids, 354, 521-528, 2007.
Barton, R.G., Clark, W.D., and Seeker, W.R., “Fate of Metals in Waste Combution Systems”, Combust. Sci. and Tech.,Vol.74, 327-342, 1990.
Bernardo, E., Varrasso, M., Cadamuro, F., Hreglich, S., “Vitrification of wastes and preparation of chemically stable sintered glass-ceramic products”, Journal of Non-Crystalline Solids 352, 4017–4023, 2006.
Boccaccini, A. R., Kopf, M. and Stumpfe, W., “Glass-ceramics from filter dust from waste incinerators”, Ceramics International 21, 231, 1995.
Cabral, A.A., Cardoso, A.A.D., Zanotto, E.D., “Glass-forming ability versus stability of silicate glasses. I. Experimental test”, Journal of Non-Crystalline Solids 320, 1-8, 2003.
Cahn, J. W., “Phase separation by spinodal decomposition in isotropic systems”, The journal of chemical physics, 42, 93-99, 1965.
Cheng, T.W., “Combined glassification of EAF dust and incinerator fly ash”, Chemosphere. 50, 47–51, 2003.
Cheng, T.W., Chu, J.P., Tzeng, C.C., Chen,Y.S., “Treatment and recycling of incinerated ash using thermal plasma technology”. Waste Management 22(5), 485-490, 2002.
Chiou, I.J., Wang, K.S., Tsai, C.C., “Enhancing performance and durability of slag made from incinerator bottom ash and fly ash”, Waste Management Voiume:29, pp. 501-505, 2009.
Chris, C.Y., Donald, W.K., Hilary, M., “The behaviour of Al MSW incinerator fly ash during thermal treatment”, Journal of Hazardous Materials, Vol.76, pp103-111, 1999.
Cioffi, R., Pernice, P. , Aronne, A., Marotta, A., “Nucleation and crystal growth in a fly ash derived glass”, J. Mater. Sci. 28, 6591-6594. 1993.
Colombo, P., Brusatin, G., Bernardo, E. and Scarinci, G., “Inertization and reuse of waste marerials by vitrifcation and fabrication of glass-base products”, Current Opinion Solid State & Materials Science, Vol. 7, pp.255-239, 2003.
Deguire, E.J. and Risbud, S.H., “Crystallization and properties of glasses prepared from lllinois coal fly ash”, J. Mater. Sci. 19,1760, 1984.
Diamond, S., “A Review of Alkali-silica and Expansion Mechanisms 1. Alkali in Cements and concrete Pore Solution”, Cement and Concrete Research,Vol.5,No.4,pp.329-346, 1975.
Dietzel A. “The cation field strengths and their relation to devitrifying process to compound formation and to the melting points of silicates”, Z Elektrochem, 48(1):9–23, 1942.
Dolar-Mantuani, L., “Handbook of Concrete Aggregates”, Noges Publications, 1984.
Donald, I.W., “Crystallization kinetics of a lithium zinc silicate glass studied by DTA and DSC”, Journal of Non-Crystalline Solids 345&346, 120–126, 2004.
Ecke, H., Sakanakuras, H., Matsuto, T., Tanaka, N., Lagerkvist, A., “Effect of Electric Arc Vitrification of Bottom Ash on the Mobility and Fate on Metals.” Environmental Science and Technology, Vol. 35, pp. 1531-1536, 2001.
Eighmy, T.T., Eusden, J.D., Krzanowski, J.E. and et al., “Comprehensive approach toward understanding element speciation and leaching behavior in municipal solid waste incineration electrostatic precipctator ash”, Environmental Science & Technology, Vol 29, No. 3, 629, 1995.
Endo, H., Nagayoshi, Y. and Suzuki, K., “Production of glass ceramics from sewage sludge”, Water Science and Technology, Vol. 36, 235-241, 1997.
Erol, M., Genc, A., Ovecoglu, M.L., Yucelen, E., Kucukbayrak, S., Taptk, Y., “ Characterization of a glass-ceramic produced from thermal powerplant fly ashes”, Journal of the European Ceramic Society 20, 2209-2214, 2000.
Erol, M., Kucukbayrak, S., Ersoy-Mericboyu, A., “The application of differential thermal analysis to the study of isothermal and non-isothermal crystallization kinetics of coal fly ash based glasses”, J. Non-Cryst. Solids. 355, 569–576, 2009.
Erol, M., Kucu-kbayrak, S., Ersoy-Mericboyu, A., Ovecoglu, M.L., “Crystallization behaviour of glasses produced from fly ash”, Journal of the European Ceramic Society 21, 2835–284, 2001.
Evans, A.G. and Wilshaw, T.R., “Quasi-static solid particle damage in brittle solids 1. Observations, analysis and implications”, Acta Metall., 24, 939±956, 1976.
Ferreira, E. B., Zanotto, E. D. and Scudeller, L.A.M., “Glass and glass–ceramic from basic oxygen furnace (BOF) slag”, Glass Science and Technology. 75(2), 75, 2002.
Fisher, G.L., Chang, D.P.Y., and Brummer, M.,“Fly Ash Collected from Electrostatic Precipitators: Microcrystalline Structures and Mystery of the Spheres”, Science, 192, pp.553, 1976.
Forestier, L., and Le, L.G.,“Characterization of flue gas residues from municipal solid waste combustors”, Environmental Science and Technology 32(15), 2250, 1998.
Francis, A.A., Rawlings, R.D., Sweeney, R., Boccaccini, A.R., “Crystallization kinetic of glass particles prepared from a mixture of coal ash and soda-lime cullet glass”, J. Non-Cryst. Solids. 333,187–193, 2004.
Froberg , L., Kronberg, T., Tornblom, S., Hupaa, L., “Chemical durability of glazed surfaces”, Journal of the European Ceramic Society 27, 1811–1816, 2007.
Gao, X., Wang, W., Yea, T., Wang, F., Yuxin Lan “Utilization of washed MSWI fly ash as partial cement substitute with the addition of dithiocarbamic chelate”, Journal of Environmental Management, Volume:88 , pp. 293-299, 2008.
Gardner, K. H., “Characterization of Leachates from Municipal Incinerator Ash Materials”, Thesis, Clarkson University, 1991.
Goeuriot, D., Dubois, J.C., Merle, D., Thevenot, F. and Exbrayat P., “Enstatite Based Ceramics for Machinable Prosthesis”, Journal of the European Ceramic Society 18, 2052-2054, 1998.
Hamernik, J.D. and Frantz, G.C., “Physical and chemical properties of municipal solid waste fly ash”, ACI Materials Journal, Volume:88, No.3, pp.294, 1991.
Helena Manninen, Annilli Perkiu, Juha Palonen, Kari Peltola and Juhani Ruuskanen, “Trace Metal Emissions From Co-combustion of Refuse Derived and Packaging Derived Fuels in a Circulationg Fluidzed Bed Boiler,” Chemosphere, 32(12), 2457-2469, 1996.
Hernandez-Crespo, M.S., Romero, M., Rincon, J.Ma., “ Nucleation and crystal growth of glasses produced by a generic plasma arc-process”, Journal of the European Ceramic Society 26,1679–1685, 2005.
Hjelmar, Ole, “Disposal strategies for municipal solid waste incineration residues”, Journal of Hazardous Materials 47, pp.347-350, 1996.
Holand, W. and Beall, G., “Glass-Ceramic Technology” 241-243, 2002.
Hruby, A., “Evaluation of glass-forming tendency by means of DTA”, Czech J. Phys. B 22,1187, 1972.
IAWG (The International Ash Working Group), “Municipal Solid WasteIncinerator Residues ”, Elsevier, 1997.
Johnson, W.A. and Mehl, R.F., “Reaction kinetics in processes of nucleation and growth[J] ”, Trans. Am. Inst. Min. Metall. Pet. Eng. 135, 416, 1939.
Jones, G.O., “Glass ”, rev Parke S., Chapman & Hall, London, 1971.
Karamanov, A. , Pelino, M.,“ Induced crystallization porosity and properties of sintereds diopside and wollastonite glass-ceramics”, Journal of the European Ceramic Society 28, 555–562, 2008 .
Kavouras, P., Charitidis , C., Karakostas, Th., “ On the parameters affecting the fracture modes in glass-ceramic materials”, Journal of Non-Crystalline Solids 352, 5515–5521, 2006.
Kavouras, P., Kehagias, T., Tsilika, I., Kaimakamis, G., Chrissafis, K., Kokkou, S., Papadopoulos, D., Karakostas, Th., “Glass-ceramic materials from electric arc furnace dust”, Journal of Hazardous Materials A139, 424–429, 2007.
Kida Akiko, Noma Yukio and Imada Teruji, “Chemical Speciation and Leaching Properties of Elements in Municipal Incinerator Ashes,” 16, Nos 5/6, 527, 1996.
Kingery, W.D., Bowen, H.K. and Uhlmann, D.R., “Introduction to Ceramics”, John Wiley & Sons Inc, New York, 2nd Edition, pp. 158-167, 1996.
Kissinger, H.E., “Variation of peak temperature with heating rate in differential thermal analysis” , J. Res. Nat’l Bureau Stand. 57, 217–221, 1956.
Kissinger, H.E., “Reaction kinetics in differential thermal analysis”, Anal. Chem. 29,1702, 1957.
Klein, D.H., Andren A.W., Lawasani M.H., West R.E., “Trace element behavior in coal-fired power plant”, Environ. Sci. Technol., 9,862-9,869, 1976.
Lee, T.C., Wang, W.J., Shih, P.Y., “Slag–cement mortar made with cement and slag vitrified from MSWI fly-ash/scrubber-ash and glass frit”, Construction and Building Materials, Volume:22, pp.1914-1921, 2008.
Levin, E.M., Robbins, C.R., McMurdie, H.F., “Phase Diagrams for Ceramists”, Amer. Ceram. Soc., Columbus, 2nd ed. 601 pp, 1964.
Lin, K.L., Chang, C.T. “Leaching characteristics of slag from the melting treatment of municipal solid waste incinerator ash”, Journal of Hazardous Materials,Volume:135, pp. 296–302, 2006.
Makoto Hattori, Eiji Shoto, “Solidification of heavy metal-containing sludges by heating with silicate, Toxic and hazardous waste disposal”, Ann Arbor Science, Vol. 3, pp.141-154, 1981.
Mangialardi, T., Paolini, A.E., Polettini, A., Sirini, P., “Optimization of the solidification/stabilization process of MSW fly ash in cementitious matrices”, Journal of Hazardous Materials, Volume:70, No. 1-2, pp. 53-70, 1999.
Marotta, A., Buri, A., Branda, F., “Nucleation in glass and differential thermal analysis”, J. Mater. Sci. 16, 341-344, 1981a.
Marotta, A., Buri, A., Branda, F., “Heterogeneous bulk nucleation and differential thermal analysis”, J. Therm. Anal. 21, 227-233,1981b.
Matusita K., Miura, K. and Komatsu T., “Kinetics of on-isothermal crystallization of some fluorozirconate glasses”, Thermochim. Acta 88, pp. 283–288, 1985.
Matusita, K. and Sakka, S., Kinetic study on crystallization of glass by differential thermal analysis – Criterion on application of Kissinger plot., J. Non-Cryst. Solids, 38&39, 741-746, 1980.
McMillan, P.W., “Glass Ceramic”, Academic Press, Second edition New York, pp. 1-124, 1979.
Moore, H., McMillan, P.W., “A study of glasses consisting of the oxides of elements of low atomic weight”., J. Soc. Glass Technol. 40, 66–96,1956.
Mostafa, N.Y., El-Hemaly, S.A.S., Al-Wakeel, E. I., El-Korashy, A.S., Brown, P.W., “Characterization and evaluation of hydraulic activity of water-cooled slag and air-cooled slag”. Cement and concrete Research 31(6), 899-904, 2001.
Murakami, T., Ishida, T., Sasabe K., Sasaki, K. and Harada, S.,“Characteristics of Melting Process for Sewage Sludge”, Water Science and Technology, 23(10/12), 2019-2028, 1991a.
Murakami, T., Sasabe, K., and Kawashima, T., “Estimation of Energy Saving for Melting Process on Sewage Sludge”, Water Science and Technology, 23(10/12), pp. 2011-2018, 1991b.
Nishida, K., Nagayoshi, Y., Ota, H., Nagasawa, H., “Melting and stone production using MSW incinerated ash”. Waste Management 21(5), pp.443-449, 2001.
Ovecoglu, M. L., “Microstructural characterization and physical properties of a slag-based glass-ceramic crystallized at 950 and 1100 oC”, J. Europ. Cer. Soci. 18, 161, 1998.
Ozawa, T., “Kinetics of non-isothermal crystallization”, Polymer, vol.12, pp.150-158, 1971.
Ozawa, T., Isozaki, H., Negishi, A., “A new type of quantitative differential analysis”, Thermochim. Acta. 1 (6)545-553, 1970.
Pan, J.R., Huang C., Kuo, J.J., Lin, S.H., “Recycling MSWI bottom and fly ash as raw materials for Portland cement”, Waste Management, Volume:28, pp. 1113-1118, 2008.
Park, Y. J., Heo, J. “Vitrification of Fly Ash from Municipal Solid Waste Incinerator”. Journal of Hazardous Material, Vol. B91, pp. 83-93, 2002b.
Park, Y. J., Heo, J., “Conversion to glass-ceramics from glasses made by MSW incinerator fly ash for recycling”, Ceram. Int. 28, 689–694, 2002a.
Pascal Richet, Mathieu Roskosz, Jacques Roux, “Glass formation in silicates: Insights from composition”, Chemical Geology 225,388– 401, 2006.
Pelino, M., Karamanov, A., Pisciella, P., Crisucci, S., Zonetti, D., “Vitrification of electric arc furnace dusts”, Waste Management 22 945–949, 2002.
Peng, F. Liang, , K., Hu, A., Shao, H., “Nano-crystal glass-ceramics obtained by crystallization of vitrified coal fly ash”, Fuel, 83(13), 1973–1977, 2004.
Pisciella, P., Crisucci, S., Karamanov, A., Pelino, M.,“Chemical durability of glasses obtained by vitrification of industrial wastes”, Waste Management 21, 1-9, 2001.
Pluss, A. and Ferrell, J.R., “Characterization of lead and other heavy metal in fly ash from municipal waste incinerators”, Hazardous waste and Hazardous Materials, 8(4), pp. 275-292 , 1991.
Putnis, A. and McConnell, J.D.C., “Principles of mineral behaviour”, Blackwell Scientific Publications, Oxfotd, Londen, Edinburg, Boston and Melbourne, 1980.
Rawlings, R.D., Wu, J.P., Boccaccini, A.R., “ Glass-ceramics: Their production from wastes-A Review”. Journal of materials science. 41, 733 -761. 2006.
Rawson, H., “Properties and applications of glass”, Elsevier, New York, 1980.
Richers, U. and Birnbaum, L., “ Detailed investigations of filer asher from municipal solid waste incineration”, Waste Management & Research, Volume:6, pp.227, 1998.
Romero, M., Rawlings, R.D., Rincon, J.Ma.,“Crystal nucleation and growth in glasses from inorganic wastes from urban incineration”, Journal of Non-Crystalline Solids 271, 106-118, 2000.
S. D. Stookey, “Method of Making Ceramics and Product Thereof”, U. S. Patent 2,920,971, 1960.
Saad, M., Poulin, M., “Glass forming ability criterion”, Mater. Sci. Forum 19&20,11, 1987.
Saikia, N., Kato, S., Kojima, T., “Production of cement clinkers from municipal solid waste incineration (MSWI) fly ash”, Waste Management, Volume:27, pp. 1178-1189, 2007.
Sakai, S. and Hiraoka, M., “Municipal solid waste incinerator residue recycling by thermal processes”, Waste Management, Vol. 20, No. 2-3, pp.249-258, 2000.
Schairer, J.F., Bowen, N.L., “The system K2O–Al2O3–SiO2”, Am. J. Sci. 253, 681– 746, 1955.
Schairer, J.F., Bowen, N.L., “The system Na2O–Al2O3–SiO2”. Am. J. Sci. 254, 129– 195, 1956.
Shi, H.S., Kan L.L., “Leaching behavior of heavy metals from municipal solid wastes incineration (MSWI) fly ash used in concrete”, Journal of Hazardous Materials, Volume:164, pp. 750-754, 2009.
Shoto, E. and Hattori, M., “Studies on the stabbillization /solidification of chromium-containing sludge”, Toxic and Hazardous Waste Disposal, Vol.3,pp.125-140, 1981.
Sidney Mindess and J. F. Young, “Concrete”, Prentice Hall Inc., N.J.,1981.
Silva, A.C.and Mello-Castanho, S.R.H., “Vitrified galvanic waste chemical stability”, Journal of the European Ceramic Society 27, 565–570, 2007.
Sinton, C.W. and LaCourse, W.C., “Experimental survey of the chemical durability of commercial soda-lime-silicate glasses”, Materials Research Bulletin 36, 2471–2479, 2001.
Stegemann, J.A., Cote, P.L. “Summary of Investigation of Test Methods for Solidified Waste Evaluation”, Waste Management, Vol. 10, pp.41-52, 1990.
Strnad, Z., “Glass-Ceramic Material”, Elsevier Science Publishing Company, Inc,1986.
Sukrut, S.T., Mirko S., Edward L.D., “ Morphology and composition of the fly ash particle produced in incineration of municipal solid waste”, Fuel Processing Technology, 75, 179-184, 2002.
Tanaka, T. et al., “Demonstration of a multi-purpose incineration melter system”, ANS International Topical Meeting, 1986.
Tulyaganov, D.U., Ribeiro, M.J., Labrincha, J.A., Ceram. Int. 28,515, 2002.
Van der Sloot, H.A., Kosson, D.S. and Hjelmar, O., “Characteristics, treatment and utilization of residues from municipal waste incineration”, Waste Management, Vol. 21, No. 8, pp.753-765, 2001.
Vargas S,Frandsen F J,Dam-Johansen K, “Rheological properties of high- temperature melts of coal ashes and other silicates”, Progress in. Energy and Combustion Science, (27)237-429, 2001.
Vogel, W., “Chemistry of glass” , Am. Ceram Soc., 38, 1985.
Wang, K.S., Chiang, K.Y., Perng,J.K.,and Sun,C.J., “The Characteristics Study on Sintering of Municipal Solid Waste Incinerator Ashes”, Journal of Hazardous Material, Vol.59, pp. 201-210, 1998.
Warren, B. E., “Kristallogy. Mineralog. Petrogr”, 86, 349, 1933.
Wey, M. Y., Degreve, J., Van Rompay, P., “Simulation of a Slagging Incineration Process”, Computers & Chemical Engineering, 15(5), 297-304, 1991.
Wiles, C.C., “Municipal solid waste combustion ash: State-of-the-knowledge”, Journal of Hazardous Materials, Volume:47, pp.325-344, 1996.
Xavier Querol, Jose Luis, Fernandes-Turiel and Angel Lopez-Soler, “Trace Element in Coal and Their Behavior During Combustion in a Large Power Station”, Fuel, 74(3), 331-343, 1995.
王櫻茂、吳振成、楊宏儀、田永銘、陳裕新,「台灣地區鹼-骨材反應特性之研究」,行政院國科會專題研究報告,共98頁,1989。
江康鈺與王鯤生,「污泥熔融處理及資源再利用技術」,工業污染防治,第64期,1997。
池原洋一與鈴木邦雄等,「清掃工廠のっぅィゥシシュの抵抗爐による熔融處理技術時について」,都市清掃,第39 卷,第153 號,1986。
行政院原子能委員會核能研究所(INER)環境保育中心研發現況與成果,http://www.iner.gov.tw/StudyResult/envirom.htm。
行政院環保署,「廢棄物焚化灰渣材料化技術研究專案計畫期末報告」,2003。
行政院環境保護署各月份施政績效報告,93年2月,http://www.epa.gov.tw/policy/monthjob/9302.htm。
行政院環保署廢棄物管制中心,http://www.epa.gov.tw/prog/index.htm。
何春松,「灰渣熔融技術之發展」,國立台灣大學台大工程學刊,第84期,2002。
吳宇瀚,「玻璃的相分離行為與應用」,中華民國陶業研究學會會刊 20 [2] 16-23,2001。
吳振名,「玻璃陶瓷-陶瓷技術手冊」, 中華民國產業科技發展協進會,第28章,pp. 963-986,1994。
李建中、李釗、何啟華及鄭清江,「垃圾焚化灰燼之力學特性與在大地工程之應用」,一般廢棄物灰渣資源化技術與實務研討會論文集,p.193,1996。
村上忠弘、石田貴榮、鈴木和美、角田幸二,「污泥熔に係ゐ指標の檢討」,下水道協會誌,Vol. 2,No.300,pp.32-46,1985。
村上忠弘與石田貴榮,「污泥熔融に係ゐ指標の檢討」,下水道協會誌,Vol. 26,No. 300,1989。
東 康夫、鈴木富雄、清水由章、山田基夫,「都市燒卻灰溶融特性」,廢棄物學會論文誌,Vol.7, No.4,pp.193-201,1996。
邵功賢、陳必晟、李佳禾、馬鴻文、商能洲,「台灣鋅物質流分析與流佈管理初探」,中技社通訊期刊,第91期,p2-p4,2010。
侯朝霞,「玻璃陶瓷的研究發展」,吉林化工學院學報,第23卷,第一期,2006。
倪文、李建平、方興、陳德平、陳那那,「礦物材料學導論」,科學出版社,p33-34,1988。
徐昱櫸,「TiO2添加對鋰鋁矽酸鹽系玻璃陶瓷結晶機制之研究」,碩士論文,國立清華大學材料工程學系,新竹,2004。
張木彬、張簡國平、林傑,「都市垃圾焚化廠及電弧爐煉鋼廠煙道排氣及灰份中戴奧辛濃度及物種分布研究」,都會合作空污計畫,NSC-91-EPA-Z-008-001(2002)。
張旭彰,「灰渣熔融處理法的理論與實務」,工業污染防治,第十二卷,第四期,pp.95-112,1993。
張旭彰,「都市垃圾焚化灰渣熔融處理操作特性之研究」,碩士論文,國立中央大學環境工程學研究所,中壢,1992。
曹 申,「提煉冶金技術與電爐集塵灰」,環安簡訊電子報第57期,2005。
陳蒼霈,「燃煤底灰添加碳酸鎂製造玻璃陶瓷結晶行為之研究」,碩士論文,國立成功大學資源工程學研究所,台南,2003
曾博榆,「都市垃圾焚化飛灰熔融處理取代部分水泥之研究」,碩士論文,國立中央大學環境工程學研究所,中壢,2002。
程道腴, 鄭武輝譯, 玻璃學, 財團法人徐氏基金會, 臺北, 1992, pp. 126-129.
黃兆龍,「高等混凝土技術」,國立臺灣工業技術學院營建系,1985。
黃兆龍與蘇南,「台灣北中部主要河川粗骨材微觀結構研究」,Chinese Journal of Material Science, vol.20, No.3, p133-143,1988。
黃明政、鄭大偉、曾錦清、邱文通、楊昇府(2005),「焚化灰渣熔融製成黑色微晶材料之資源化研究」,第二十屆廢棄物處理技術研討會,桃園中壢。
楊金鐘與吳裕民,「垃圾焚化灰渣穩定化產物再利用之可行性探討」,一般廢棄物焚化灰渣資源化技術與實務研討會論文集,p.43,台北,1996。
楊敏鑫,「廢棄物衍生Thermite熔融劑處理焚化飛灰-反應機制及重金屬移行之研究」,碩士論文,國立中央大學環境工程研究所,中壢,2006。
葉宗智,「垃圾焚化飛灰粒徑對燒結效果之研究」,碩士論文,國立中央大學環境工程研究所,中壢,1997。
詹炯淵,「垃圾焚化飛灰管理對策之研究」,碩士論文,國立台灣大學環境工程學研所,2001。
鈴木孝與藤本忠生,「都市み燒卻殘渣の熔融處理」,都市清掃,第40卷,第159號,1987。
廖錦聰,「焚化灰渣資源化技術」,焚化灰渣處理技術研討會論文集,新竹,1993。
褚炳麟,「台灣西部地區砂石料源鹼質反應調查研究」,交通部國道工程局新建工程處,台北,1994。
劉暐廷、李公哲,「半導體業廢水污泥熔融處理資源化技術之研發,第二十屆廢棄物處理技術研討會」,中壢,2005。
劉瓊芳,「回收電爐集塵灰有價物質之技術介紹」,環安簡訊電子報第57期,2005。
鄭文欽,「都市垃圾焚化底灰受鹽類影響重金屬釋出之研究」,淡江水資源及環境工程研究所碩士論文,1995。
橋本建次,「廢棄物的固形化技術」, p.1-59,1982。
蕭炳欽,「都市垃圾灰渣與下水污泥灰渣共同高溫熔融處理操作溫度特性之研究」,碩士論文,國立中央大學環境工程學研究所,中壢,1993。
藍得彰、陳明德、陳文卿,「國內電爐集塵灰產出現況及處理技術分析」,環安簡訊電子報第57期,2005。
關 一洋,「旋回溶融爐-千葉市」,下水道協會誌,Vol.26,No.307,pp.41-46,1989。
蘇茂豐,「電弧爐煉鋼爐渣資源化推動概況」,電弧爐煉鋼爐渣資源化技術推廣及成果發表會資料,2000。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔