(18.206.177.17) 您好!臺灣時間:2021/04/11 03:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:呂學璁
研究生(外文):Hsueh-Tsung Lu
論文名稱:以非週期性晶疇極化反轉鈮酸鋰晶體作為電光波長調變光參量產生器
論文名稱(外文):Active Telecom-Band Wavelength tuning in Electro-Optic Aperiodically Poled Lithium Niobate Optical Parametric Generator
指導教授:陳彥宏陳彥宏引用關係
指導教授(外文):Yen -Hung Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:145
中文關鍵詞:電光波長調變非週期性晶疇極化反轉鈮酸鋰晶體光參量產生器非線性光學
外文關鍵詞:optical parametric generatorwavelength tuningnonlinear opticsaperiodically poled lithium niobateelectro optic
相關次數:
  • 被引用被引用:3
  • 點閱點閱:144
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨光通訊之發展,一個低成本且同時具備多訊號光輸出以及電光波長調變功能之雷射光源於高密度分波多工系統的應用為相當重要。

於本研究中,設計一非週期性晶疇極化反轉鈮酸鋰晶體結構,藉以多個光參量產生機制,於通訊波段輸出多個雷射訊號,並構思兩種不同的非理想正、負晶疇長度比結構設計方式,以此對光參量產生機制之輸出訊號光進行電光波長調變。

本元件於兩個訊號光(1540nm、1550nm)輸出以及三個訊號光(1510nm、1550nm、1605nm)輸出之設計結構的電光波長調變率最佳分別約可達0.38nm/(kV/mm)以及0.46nm/(kV/mm),並經設計改良,其輸出訊號光間的相對功率則由平均31.64%提昇至86.55%,成功設計一單塊非串級式之多訊號光輸出且具電光波長可調的非線性積體雷射光源。
With the development of optical communication, a low-cost laser source which has both multi-wavelength output and the electro-optical (EO) wavelength tuning ability, for DWDM systems’ applications, is really significant.

In this study, we designed, fabricated, and demonstrated an aperiodic poled lithium niobate(APPLN) structure that combined multiple optical parametric generator(OPG) to output multiple wavelength in the communications-band. And we also designed two methods to approach non-ideal domain length APPLN structure, making this chip having an electro-optical wavelength tuning ability in the OPG signal spectrum.

With the EO APPLN designed by the nonideal domain length ratio technique, we can achieve a spectral tuning rate of ~0.38nm/(kV/mm) for 2-peak signals design and ~0.46nm/(kV/mm) for 3-peak signalsdesign. And with improved design, the relative signal output power is increased from an average of 31.64% to 86.55%. We have successfully achieved a non-cascade, multi-wavelength output in telecom band and tunable EO APPLN laser devices.
第一章 緒論 1
1-1 前言 1
1-2 鈮酸鋰晶體 4
1-3 研究動機 11
1-4 文獻探討 12
1-5 內容概要 17

第二章 理論背景 18
2-1 準相位匹配 19
2-1-1 雙折射相位匹配 21
2-1-2準相位匹配 25
2-2 光參量產生器 29
2-3 非週期性晶疇極化反轉結構 37
2-4 非理想正負晶疇長度比結構之電光效應 41
2-4-1 電光效應 41
2-4-2 鈮酸鋰晶體之電光效應 44
2-4-3 非理想正負晶疇長度比結構之電光效應 47

第三章 設計方法與製造流程 54
3-1 非週期性晶疇極化反轉結構之設計 55
3-1-1 模擬退火法 56
3-1-2 以模擬退火法進行非週期性晶疇極化反轉結構之設計 59
3-1-3 模擬退火演算法程式之驗證 62
3-1-4 非週期性晶疇極化反轉鈮酸鋰晶體光參量產生器之設計 66
3-2 非理想正負晶疇長度比結構之設計 72
3-3 元件製程 76
3-3-1 鈮酸鋰晶體之晶疇極化反轉製程 76
3-3-2 黃光微影製程 79
3-3-3 晶疇極化反轉製程 82
3-3-4 以外加電場法進行晶疇極化反轉過程 86

第四章 實驗量測與結果分析 89
4-1 量測系統 90
4-1-1 載具設計 90
4-1-2 量測架構 92
4-2 非週期性晶疇極化反轉鈮酸鋰晶體 93
4-3 非對稱正負晶疇長度比之晶疇極化反轉鈮酸鋰晶體 97
4-3-1 非對稱正負晶疇長度比結構之模擬 97
4-3-2 非對稱正負晶疇長度比結構之量測 101
4-4 非理想正負晶疇長度比之晶疇極化反轉鈮酸鋰晶體 103
4-4-1 以晶疇極化反轉製程之參數調控所設計之結構模擬 103
4-4-2 以晶疇極化反轉製程之參數調控所設計之結構量測 108
4-4-3 以模擬退火法之目標函數設定所設計之結構模擬 111
4-4-4 以模擬退火法之目標函數設定所設計之結構量測 115
4-5 實驗結果之分析 119
4-6 實驗誤差之模擬 122
4-6-1 晶疇極化反轉區塊合併誤差之模擬 122
4-6-2 晶疇極化反轉區塊隨機誤差之模擬 124

第五章 結論與未來展望 127
5-1 結論 127
5-2 未來展望 128
5-2-1 非週期性結構之設計演算法改良 128
5-2-2 雷射系統之應用 133

文獻探討 136
第一章 緒論

[1.1] Albert Einstein, “Zur Quantentheorie der Strahlung (On the Quantum
Theory of Radiation) .”, Physika Zeitschrift, Vol. 18, 1917

[1.2] H. Kopfermann and R. Ladenburg, “Experimental Proof of ‘Negative
Dispersion’ .”, Nature, Vol. 122, 1928

[1.3] E. M. Purcell and R. V. Pound, “A Nuclear Spin System at Negative
Temperature.”, Physical Review Letters. 81, 1951

[1.4] T. H. Maiman, “Stimulated Optical Radiation in Ruby.”, Nature,
187, 1960

[1.5] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich,
“Generation of Optical Harmonics.”, Physical Review Letters,
Vol.7, Number 4, 1961

[1.6] M. Bass, P.A. Franken, A.E. Hill, C.W. Peters, G. Weinreich, “Optical
Mixing.”, Physical Review Letters, vol. 8, no. 18, 1962

[1.7] R. H. Kingston, “Parametric Amplification and Oscillation at Optical
Frequencies.”, Proceedings of the Institute of Radio Engineers, 50, 1962

[1.8] S. E. Miller, “Integrated Optics : an Introduction.”,
Bell System Technical Journal, 48, 1969

[1.9] Robert G. Hunsperger, “Integrated Optics : theory and technology.”,
Springer- Verlag Berlin Heidelberg New York, 2002

[1.10] 陳秋惠,「電場輔助鉺擴散鈮酸鋰之研究」,國立臺北科技大學
光電技術研究所,碩士論文,中華民國九十二年七月



[1.11] 張煒堃,「以串級式電光週期性晶格極化反轉鈮酸鋰達成三波長主
動式Q-調制Nd:YVO4雷射」,國立中央大學,光電科學研究所
碩士論文,中華民國九十八年六月

[1.12] C. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen,
G. Schreiber, W. Sohler, H. Suche, R. Wessel, S. Balsamo,
I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er: LiNbO3
Waveguide Laser.”, IEEE Journal of Selected Topics in Quantum
Electronics. 6(1), 2000

[1.13] Masatoshi Fujimura, Takatomi Kodama, Toshiaki Suhara, and
Hiroshi Nishihara, “Quasi-Phase-Matched
Self-Frequency-Doubling Waveguide Laser in Nd: LiNbO3.”,
IEEE Photonics Tech. Lett. 12(11), 2000

[1.14] Yu. N. Korkishko, V. A. Fedorov, S. M. Kostritskii, E. I. Maslennikov,
M. V. Frolova, and A. N. Alkaev, C. Sada, N. Argiolas, and M. Bazzan,
“Proton-exchange waveguide in MgO-doped LiNbO3 : Optical and
structure properties.”, Journal of Applied Physics, Vol.94, No.2, 2003

[1.15] S. Steinberg, R. Göring, T. Hennig, and A. Rasch, “Comparison
of Photorefractive-index Changes in Annealed-proton-exchanged
Channel Waveguides in MgO-doped and congruent LiNbO3.”,
Optics Letters, Vol. 20, Issue 7, 1995

[1.16] J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton Exchange for
High-index Waveguides in LiNbO3.”, Applied Physics Letters, 41, 1982

[1.17] R. V. Schmidt and I. P. Kaminow, “Metal Diffused Optical Waveguides
in LiNbO3.”, Applied Physics Letters, 25, 1974

[1.18] Gregory David Miller July, “Periodically Poled Lithium Niobate :
Modeling, Fabrication, and Nonlinear-Optical Performance.”,
Department of Electric Engineering, Stanford University, 1998

[1.19] W. H. Zachariasen, Skr. Norske Vid-Ada., Oslo, Mat. Naturv.,
No.4, 1928

[1.20] B. T. Matthias and J. P. Remeika, “Ferroelectricity in the Ilmenite
Structure.”, Physical Review Letters, 76, 1949

[1.21] A. A. Ballman, “Growth of Piezoelectric and Ferroelectric Materials by
the Czochralski Technique.”, Journal of the American Ceramic Society,
48, 1965

[1.22] P. Lerner, C. Legras and J. P. Duman, “Stoechiométrie des
Monocristaux de Métaniobate de Lithium.”, Journal of Crystal Growth,
3-4, 1968

[1.23] R. L. Byer, J. F. Young and F. S. Feigelson, “Growth of High-quality
LiNbO3 Crystals from the Congruent Melt.”,
Journal of Applied Physics, 41, 1970

[1.24] 孔勇發,許京軍,張光寅,劉思敏,陸猗,「多功能光電材料 – 鈮
酸鋰晶體」,科學出版社,2005

[1.25] Yen-Chieh Huang, “Principles of Nonlinear Optics Course Reader.”,
Institute of Photonics Technologies / Department of Electrical
Engineering, National Tsinghua University, Hsinchu, Taiwan, 2007

[1.26] K. Kitamura, J. K. Yamamoto, N. Iyi, S. Kimura and T. Hayashi,
“Stoichiometric LiNbO3 Single Crystal Growth by Double Crucible
Czochralski Method Using Automatic Powder Supply System.”,
Journal of Crystal Growth, 116, 1992

[1.27] Dieter H. Jundt, “Temperature-dependent Sellmeier Equation for the
Index of Refraction, ne, in Congruent Lithium Niobate.”,
Optics Letters, Vol. 22, No. 20, 1997

[1.28] 黃俊育,「主動式多通道窄頻寬通Ti:PPLN 波導濾波及模態轉換器
之研究」,國立中央大學,光電科學研究所,碩士論文,
中華民國九十五年十月

[1.29] A. Yariv and P. Yeh, “Optical waves in Crystals.”,
Wiley, New York, 1983

[1.30] 邱寶賢,「綠光準相位匹配二倍頻質子交換鎂摻雜鈮酸鋰波導的製
程研究」,國立中央大學,光電科學研究所,碩士論文,
中華民國九十八年十月

[1.31] A. K. Srivastava, et. al., “1 Tb/s Transmission of 100WDM 10Gb
Schannels over 400km of TrueWave Fiber.”, OFC’98, PD10.

[1.32] James Downing, “Fiber Optics Communications.”,
Thomson Learning, Inc., 2005

[1.33] Fei Wu, Xianfeng Chen, Xianglong Zeng, Yuping Chen, Yuxing Xia,
“Generation of Multi-Wavelength Light Sources for Optical
Communications in Aperiodic Optical Superlattice.”,
Chinese Optics Letters, Vol. 3, No. 12, 2005

[1.34] Ben-Yuan Gu, Bi-Zhen Dong, Yan Zhang, And Guo-Zhen Yang,
“Enhanced Harmonic Generation in Aperiodic Optical Superlattices.”,
Applied Physics Letters, Vol. 75, No. 15, 1999

[1.35] Ben-Yuan Gu, Yan Zhang, Bi-Zhen Dong, “Investigation of Harmonic
Generation in Aperiodic Optical Superlattices.”,
Journal of Applied Physics, Vol. 87, No. 11, 2000

[1.36] Yan Zhang, Ben-Yuan Gu, “Optimal Design of Aperiodically Poled
Lithium Niobate Crystal for Multiple Wavelengths Parametric
Amplification.”, Optics Communications, 192, 2001

[1.37] J. A. Giordmaine, R. C. Miller, “Tunable Coherent Parametric
Oscillation in LiNbO3 at Optical Frequencies.”,
Physical Review Letters, 14, 1965

[1.38] J. Raffy, T. Debuisschert, and J. -P. Pocholle, “Widely Tunable
Optical Parametric Oscillator with Electrical Wavelength Control.”,
Optics Letters, 22, 1997

[1.39] P. E. Powers, T. J. Kulp, and S. E. Bisson, “Continuous Tuning of a
Continuous-wave Periodically Poled Lithium Niobate Optical
Parametric Oscillator by Use of a Fan-out Grating Design.”,
Optics Letters, 23, 1998
[1.40] C. S. Yu and A. H. Kung, “Grazing-incidence Periodically Poled
Linbo3 Optical Parametric Oscillator.”,
Journal of the Optical Society of America B, 16, 1999

[1.41] L. B. Kreuzer, “Ruby Laser Pumped Optical Parametric Oscillator with
Electro•optic Effect Tuning.”, Applied Physics Letters, 10, 1967

[1.42] M. D. Ewban, M. J. Rosker and G. L. Bennett, “Frequency Tuning a
Mid-Infrared Optical Parametric Oscillator by the Electro-Optic
Effect.”, Journal of the Optical Society of America B, Vol. 14,
No. 3, 1997

[1.43] Yan-qing Lu, Jian-jun Zheng, Ya-lin Lu, Nai-ben Ming and
Zu-yan Xu,“Frequency Tuning of Optical Parametric Generator in
Periodically Poled Optical Superlattice LiNbO3.”,
Applied Physics Letters, Volume 74, Number 1, 1999

[1.44] Ned O’Brian, Mark Missey, Peter Powers, Vince Dominic and
Kenneth L. Schepler, “Electro-optic Spectral tuning in a
Continuous-wave, Asymmetric-duty-cycle, Periodically Poled LiNbO3
Optical Parametric Oscillator.”, Optics Letters, Vol. 24, No. 23, 1999

第二章 理論背景

[2.1] A. Yariv and P. Yeh, “Optical waves in Crystals.”, Wiley,
New York, 1983

[2.2] Yen-Chieh Huang, “Principles of Nonlinear Optics Course Reader.”,
Institute of Photonics Technologies / Department of Electrical
Engineering, National Tsinghua University, Hsinchu, Taiwan, 2007

[2.3] J. E. Midwinter and J. Warner, “The effects of phase matching method
and of uniaxial crystal symmetry on the polar distribution of
second-order non-linear optical polarization.”,
British Journal of Applied Physics, Vol. 16, No. 8, 1962


[2.4] M. V. Hobden and J. Warner, “The Temperature Dependence of The
Refractive Indices of Pure Lithium Niobate.”, Physics Letters, 22, 1966

[2.5] J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan,
“Interactions between light waves in a nonlinear dielectric.”,
Physical Review, Vol. 127, 1962

[2.6] Richard A. Baumgartner, Robert L. Byer, “Optical Parametric
Amplification.”, IEEE Journal of Quantum Electronics,
Vol. QE-15, No.6, 1979

[2.7] Y. R. Shen, “The Principles of Nonlinear Optics.”, Wiley,
New York, 1984

[2.8] Gerald T. Moore, Karl Koch, “Optical Parametric Oscillation with
Intracavity Sum-Frequency Generation.”,
IEEE Journal of Quantum Electronics, Vol. 29, No.3, 1993

[2.9] M. Abramowitz, I. A. Stegan, “Handbook of Mathematical Function.”,
New York, Dover, 1965

[2.10] Shi-ning Zhu, Yong-yuan Zhu, Nai-ben Ming, “Quasi-Phase-Matched
Third-Harmonic Generation in a Quasi-Periodic Optical
Superlattice.”, Science, Vol. 278, No. 5339, 1997

[2.11] Shi-ning Zhu, Yong-yuan Zhu, Yi-qiang Qin, Hai-feng Wang,
Chuan-zhen Ge, and Nai-ben Ming, “Experimental Realization of
Second Harmonic Generation in a Fibonacci Optical Superlattice of
LiTaO3.”, Physical Review Letters, 78, 1997

[2.12] Ben-Yuan Gu, Yan Zhang, Bi-Zhen Dong, “Investigation of Harmonic
Generation in Aperiodic Optical Superlattices.”,
Journal of Applied Physics, Vol. 87, No. 11, 2000

[2.13] Ben-Yuan Gu, Bi-Zhen Dong, Yan Zhang, And Guo-Zhen Yang,
“Enhanced Harmonic Generation in Aperiodic Optical Superlattices.”,
Applied Physics Letters, Vol. 75, No. 15, 1999

[2.14] Fei Wu, Xianfeng Chen, Xianglong Zeng, Yuping Chen, and
Yuxing Xia, ”Generation of Multi-wavelength Light Sources for Optical
Communication in Aperiodic Optical Superlattice.”,
Chinese Optics Letters, Vol. 3, No. 12, 2005

[2.15] B. E. A. Saleh, M. C. Teich, “Fundamentals of Photonics.”,
John Wiley & Sons, Inc., 1991

[2.16] Ned O’Brien et al., “Electro-optic Spectral Tuning in a
Continuous-Wave, Asymmetric-duty-cycle, Periodically Poled LiNbO3
Optical Parametric Oscillator.”, Optics Letters, Vol.24, No.23, 1999

[2.17] Yan-qing Lu, Jian-jun Zheng, Ya-lin Lu, Nai-ben Ming and
Zu-yan Xu,“Frequency Tuning of Optical Parametric Generator in
Periodically Poled Optical Superlattice LiNbO3.”,
Applied Physics Letters, Volume 74, Number 1, 1999

[2.18] Ned O’Brian, Mark Missey, Peter Powers, Vince Dominic and
Kenneth L. Schepler, “Electro-optic Spectral tuning in a
Continuous-wave, Asymmetric-duty-cycle, Periodically Poled LiNbO3
Optical Parametric Oscillator.”, Optics Letters, Vol. 24, No. 23, 1999

[2.19] Y. H. Chen, F. C. Fan, Y. Y. Lin, J. T. Shy, Y. P. Lan, Y. F. Chen,
“Simultaneous amplitude modulation and wavelength conversion in an
asymmetric-duty-cycle periodically poled lithium niobate.”,
Optics Communications, 223, 2003

第三章 設計方法與製造流程

[3.1] Ben-Yuan Gu, Yan Zhang, Bi-Zhen Dong, “Investigations of Harmonic
Generations in Aperiodic Optical Superlattices.”,
Journal of Applied Physics, Vol. 87, No. 11, 2000

[3.2] Gregory David Miller July, “Periodically Poled Lithium Niobate :
Modeling, Fabrication, and Nonlinear-Optical Performance.”,
Department of Electric Engineering, Stanford University, 1998

[3.3] J. H. Holland, “Genetic Algorithms.”, Scientific American, 4,1992

[3.4] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller, “Equation of State Calculation by Fast Computing Machines.”,
Journal of Chemical Physics, 21(6), 1953

[3.5] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi, “Optimization by
Simulated Annealing.”, Science, Vol. 220, No. 4598, 1983

[3.6] 許顧輝,「模擬退火法於設計繞射光學元件之研究」,
國立臺北科技大學,光電工程系碩士班,碩士論文,
中華民國九十四年七月

[3.7] Ned O’Brian, Mark Missey, Peter Powers, Vince Dominic and
Kenneth L. Schepler, “Electro-optic Spectral tuning in a
Continuous-wave, Asymmetric-duty-cycle, Periodically Poled LiNbO3
Optical Parametric Oscillator.”, Optics Letters, Vol. 24, No. 23, 1999

[3.8] Shintaro Miyazawa, “Ferroelectric Domain Inversion in Ti-diffused
LiNbO3 Optical Waveguide.”, Journal of Applied Physics, 50, 1979

[3.9] J. Webjorn, F. Laurell, G. Arvidsson, “Blue Light Generated by
Frequency Doubling of Laser Diode Light in a Lithium Niobate Channel
Waveguide.”, IEEE Photonics Technology Letters, 1, 1989

[3.10] Alan C. G. Nutt, Venkatraman Gopalan, and Mool C.Gupta, “Domain
Inversion in Linbo3 Using Direct Electron-beamwriting.”,
Applied Physics Letters, 60, 1992

[3.11] A. Agronin, Y. Rosenwaks, and G. Rosenman, “Ferroelectric Domain
Reversal in LiNbO3 Crystals Using High-voltage Atomic Force
Microscopy”, Applied Physics Letters, 85, 2004

[3.12] 閔乃本,「非線性光學」,中國科學技術出版社,1999



[3.13] Duan Feng, Nai-Ben Ming, Jing-Fen Hong, Yong-Shun Yang,
Jin-Song Zhu, Zhen Yang, and Ye-Ning Wang, “Enhancement of
Second-Harmonic Generation in Linbo3 Crystals with Periodic Laminar
Ferroelectric Domains.”, Applied Physics Letters, 37, 607, 1980

[3.14] I. Camlibel, “Spontaneous Polarization Measurements in Several
Ferroelectric Oxides Using Pulsed-Field Method.”,
Journal of Applied Physics, vol. 40, pp. 1690-1693, 1969

[3.15] G. Khanarian, R. A. Norwood, D. Haas, B. Feuer, and D. Karim,
“Phase‐matched second‐harmonic generation in a polymer
waveguide.”, Applied Physics Letters, 57, 1990

[3.16] M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order
Quasi-phase Matched Linbo3 Waveguide Periodically Poled by
Applying an External Field for Efficient Blue
Second-harmonic-generation.”, Applied Physics Letters, 62, 1993

[3.17] L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer,
W. R. Bosenberg, “Quasi-phase-matched 1.064-mm-pumped Optical
Parametric Oscillator in Bulk Periodically Poled LiNbO3.”,
Optics Letters, Vol. 20, No.1, 1995

[3.18] L. Myer, R. Eckardt, M. Fejer, R. Byer, W. Bodenbeg, and
J. Pierce,“Quasi-phase Matched Optical Parametric Oscillators
in Bulk Periodically Poled LiNbO3.”,
Journal of the Optical Society of America B, Vol. 12, No. 11, 1995

[3.19] 張正良,「非週期性晶格極化反轉鈮酸鋰作為有效率的二倍頻
和模態轉換器之研究」,國立中央大學,光電科學研究所,
碩士論文,中華民國九十七年七月

[3.20] 林少偉,「非週期性晶格極化反轉鈮酸鋰作為主動式窄頻寬通多波
長濾波器及倍頻多波長濾波器」,國立中央大學,光電科學研究所
,碩士論文,中華民國九十五年十二月



第五章 設計方法與製造流程

[5.1] 張錫雄,「以單塊二維週期性晶格極化反轉鈮酸鋰同時作為Nd:YVO4
雷射之電光Q調制器和腔內光參量振盪器」,國立中央大學,
光電科學研究所,碩士論文,中華民國九十九年十二月

[5.2] A. Yariv and P. Yeh, “Optical waves in Crystals.”, Wiley,
New York, 1983

[5.3] 張煒堃,「以串級式電光週期性晶格極化反轉鈮酸鋰達成三波長主
動式Q-調制Nd:YVO4雷射」,國立中央大學,光電科學研究所,
碩士論文,中華民國九十八年六月

[5.4] 黃俊育,「主動式多通道窄頻寬通Ti:PPLN波導濾波及模態轉換器
之研究 」,國立中央大學,光電科學研究所,碩士論文,
中華民國九十五年十月

[5.5] 鄧聖龍,「退火式質子交換波導PPLN電光調制TM模態轉輻射偏振
態之研究」,國立中央大學,光電科學研究所,碩士論文,
中華民國九十七年七月

[5.6] Daniel B. Ostrowsky, Raymond Reinisch, “Guided Wave Nonlinear
Optics.”, Kluwer Academic Publishers, 1992

[5.7] 張育誠,「半導體雷射泵浦內建式Q-調制Nd:MgO:PPLN雷射之研
究」,國立中央大學,光電科學研究所,碩士論文,
中華民國九十五年十月
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔