(34.204.185.54) 您好!臺灣時間:2021/04/11 06:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李振宇
研究生(外文):Jen-yu Li
論文名稱:建立於矽基光學平台之高分子聚合物波導光路
論文名稱(外文):Polymer Waveguides Based on Silicon Optical Benches
指導教授:伍茂仁
指導教授(外文):Mount-Learn Wu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:54
中文關鍵詞:高分子聚合物
外文關鍵詞:PolymerWaveguide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:146
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技日漸發達,傳遞的資訊量以倍數成長,以電為媒介的傳遞方式因受限到傳統銅材料特性的限制,提升傳遞頻寬及速率方面以達到了極限,利用光做為高速傳遞媒介之光連接技術取代是一種解決路徑。
本研究提出一個具45°反射面之高分子聚合物波導光路,此技術可應用於晶片內或晶片與晶片間光學訊號傳遞。在架構上藉由一個具光學品質的矽基45°反射面,利用波長為1550 nm的紅外光源進入高分子聚合物波導經45°反射面轉折進入光接收偵測器(Power Detector)具45°反射面高分子聚合物波導光路包含45°反射面與長直矩形波導,其長直矩形波導結構大小為40 μm × 20 μm。
本研究完成長直矩形波導以及具45°反射面之高分子聚合物波導光路之光學模擬、製程與光學特性量測。經由設計的具45°反射面之高分子聚合物波導光路,在長直矩形波導部分,插入損耗為-2.49 dB,傳遞損耗為-2.085 dB/cm,出射端多模光纖空間位移容忍度在耦合能量損失1 dB時在垂直方向與水平方向約為44 μm;具45°反射面轉折波導光路部份,插入損耗為-5.62 dB,入射端單模光纖光源位移容忍度在耦合能量損失1 dB時在垂直方向約為24 μm,水平方向則為8 μm。
In recent years, the optical interconnect is an important issue for communication technology. Because these are limitations of increasing transmission speed and bandwidth for traditional copper, the optical interconnect is the other approach to apply to the high-speed transmission.
In this paper, the polymer waveguide with a 45°reflector is introduced on the silicon optical bench. This technique can be applied to the optical interconnects of inter- or intra-chip applications. In the framework, the 1550 nm light source was coupled to polymer waveguide and bend to the power meter by 45°reflector. The proposed polymer waveguide fabricated on a silicon optical bench includes a Si-based 45° reflector and a straight rectangular waveguide with a cross-section of about 40 μm × 20 μm.
The insertion loss of straight rectangular waveguide is -2.49 dB, and its propagation loss is -2.085 dB/cm. At output multi-mode fiber, the 1-dB degradation tolerance in the vertical direction and the horizontal direction are about 44 μm. In the bending waveguide with a 45°reflector, the insertion loss is -5.62 dB, and the 1-dB degradation tolerance of input single-mode fiber is about 24 μm in the vertical direction, and is 8 μm in the horizontal direction.
目錄
中文摘要 i
英文摘要 ii
目錄 iii
圖目錄 v
表目錄 ix
第一章 序論 1
1-1 前言 1
1-2 研究動機與目的 8
第二章 具45°反射面之高分子聚合物波導光路設計 10
2-1 高分子聚合物波導光路結構尺寸設計 10
2-2 具45°反射面之高分子聚合物波導光路結構光學模擬分 15
2-2.1 長直矩形波導光路結構光學模擬 15
2-2.2 具45°反射面波導光路結構光學模擬 18
第三章 具45°反射面之高分子聚合物波導光路製作 23
3-1 長直矩形波導製作 23
3-2 具45°反射面波導光路製作 26
3-2.1 45°反射面製程 26
3-2.2 45°反射面之高反射率金屬層製程 29
3-2.3 波導光路製作 31
第四章 高分子聚合物波導光路之量測與分析 35
4-1 長直矩形高分子聚合物波導光學特性量測 35
4-1.1 長直矩形波導光學準位量測 35
4-1.2 長直矩形波導傳遞損耗量測 41
4-2 具45°反射面之高分子聚合物波導光路光學特性量測 44
4-2.1 具45°反射面轉折波導光路插入損耗 44
4-2.2 具45°反射面轉折波導光學準位量測 47
第五章 結論與未來展望 50
參考文獻 53
1.N. Savage, “Linking with light,” IEEE Spectr. vol. 39, no. 8, pp. 32–36, (2002)
2.B. E. Lemoff, M. E. Ali, G. Panotopoulos, G. M. Flower, B. Mahdavan, A. F. J. Levi, and D. W. Dolfi, “MAUI: Enabling fiber-to-processor with parallel multiwavelength optical interconnects,” IEEE J. Lightwave Technol., 22(9), 2043-2054 (2004)
3.S. Hiramatsu and T. Mikawa, “Optical design of active interposer for high-speed chip level optical interconnects,” IEEE J. Sel. Top. Quantum Electron., 24(2), 927-934 (2006)
4.M. Aljada, K. E. Alameh, Y. T. Lee, and I. S. Chung, “High-speed (2.5 Gbps) reconfigurable inter-chip optical interconnects using opto-VLSI processors,” Opt. Express, 14(15), 6823-6836 (2006)
5.X. Wang and R. T. Chen, “Fully embedded board level optical interconnects—From point-to-point interconnection to optical bus architecture,” Proc. SPIE, 6899, 6899031-6899039 (2008)
6.D. A. B. Miller, “Physical reasons for optical interconnection,” Int. J. Optoelectron., vol. 11, no. 3, pp. 155–168, (1997)
7.D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proceedings of the IEEE 88 (6), 728-749, (2000)
8.R. Ho, K. Mai, and M. Horowitz,“The Future of Wires,” Proceedings of the IEEE, pp. 490-504, Apr (2001)
9.J. Yeh, R. K. Kostuk, and K. Tu, “Hybrid free-space optical bus system for board-to-board interconnections,” Appl. Opt., vol. 35, no. 32, pp. 354–6364, (1996)
10.R. Heming, L. C. Wittig, P. Dannberg, J. Jahns, E. B. Kley, and M. Gruber, “Efficient planar-integrated free-space optical interconnects fabricated by a combination of binary and analog lithography,” IEEE J. Lightwave Technol., 26(14), 2136-2141 (2008)
11.P. Lukowicz et al., “Optoelectronic interconnection technology in the HOLMS system,” IEEE J. Sel. Top. Quantum Electron., 9(2), 624-635 (2003)
12.H. L. Althaus, W. Gramann, and K. Panzer, “Microsystems and wafer processes for volume production of highly reliable fiber optic components for telecom- and datacom-application,” IEEE Trans. on Compon., Packag., and Manufact. Technol. pt. B, 21(2), 147-156 (1998)
13.Jayakrishnan Chandrappan, “Performance Characterization Methods for Optoelectronic Circuit Boards,” IEEE J, vol. 1,no. 3, March (2011)
14.Xiaohui Lina, “Polymer Waveguide Arrary with 45 Degree Slopes Fabricated by Bottom Side Tilted Exposure,” SPIE Digital Library, Vol. 7944 794411-6(2011)
15.Roger Dangel,“Polymer-Waveguide-Based Board-Level Optical Interconnect Technology for Datacom Applications,“ IEEE J,vol. 31,no. 4(2008)
16.I. Zubel, “Silicon anisotropic etching in alkaline solutions III: On the possibility of spatial structures forming in the course of Si(100) anisotropic etching in KOH and KOH+IPA solutions,” Sens. Actuators, A, 84(1), 116-125 (2000)
17.H. C. Lan, H. L. Hsiao, C. C. Chang, C. H. Hsu, C. M. Wang, M. L. Wu, “Monolithic integration of elliptic-symmetry diffractive optical element on silicon-based 45° micro-reflector,” Opt. Express, 17(23), 20938-20944 (2009)
18.B. E. Lemoff, M. E. Ali, G. Panotopoulos, G. M. Flower, B. Mahdavan, A. F. J. Levi, and D. W. Dolfi, “MAUI: Enabling fiber-to-processor with parallel multiwavelength optical interconnects,” IEEE J. Lightwave Technol., 22(9), 2043-2054 (2004)
19.F. Wang, F. Liu, and A. Adibi, “45 degree polymer micromirror integration for board-level three-dimensional optical interconnects,” Opt. Express, 17(13), 10514-10521 (2009)
20.Graham T. Reed, and Andrew P. Knights, “Silicon Photonics,” Wiley(2004)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔