(3.237.20.246) 您好!臺灣時間:2021/04/16 06:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭鈺潔
研究生(外文):Yu-Chieh Cheng
論文名稱:漸進式週期光子晶體共振腔之研究
論文名稱(外文):Study of Graded Photonic Crystal Cavities
指導教授:陳啟昌陳啟昌引用關係
指導教授(外文):Chii-Chang Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:73
中文關鍵詞:共振腔光子晶體
外文關鍵詞:cavitiesPhotonic crystals
相關次數:
  • 被引用被引用:0
  • 點閱點閱:229
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:0
本論文選擇在氮化鎵材料製作二維漸進式週期光子晶體共振腔,使光有效侷限於其中。以平面波展開法(Plane Wave Expansion, PWE) 與有限時域差分法(Finite-Difference-Time-Domain, FDTD)來分析漸進式週期光子晶體共振腔之特性,計算出結構參數,也以光侷限之方法來分析共振腔在垂直方向上的損耗,以及解釋為何高階模態會有較高的Q值。在室溫下架設微光激發光系統(Micro-Photoluminescence,???PL),量測結果發現,當激發光源功率大於0.9 mW時,成功量得於波長於?=362 nm 之雷射訊號,以高斯擬合得到半高寬為0.04 nm,換算 Q值為1×104。
In this study, the photonic crystals nanocavity has been designed, fabricated, and characterized in GaN bulk materials with the heterostructure which could achieve extremely high-Q factors. The device characterization was performed at room temperature using a micro-photoluminescence system. We obtain a lasing signal whose full width at half maximum (FWHM) obtained by Gaussian curve fitting is ??=0.04 nm for ?=362 nm and the threshold of excitation power is found to be 0.9 mW, corresponding to the power density of 17 kmW/cm2. The Q-factor of the cavity is as high as 104.
摘要 ................................................................................................ I
Abstract ............................................................................................... II
目錄 ............................................................................................. III
圖目錄 ............................................................................................. VI
表目錄 ............................................................................................. IX
第一章 序論 ........................................................................................ 1
1.1 光子晶體簡介 ......................................................................... 1
1.2 光子晶體共振腔文獻回顧 ...................................................... 6
1.3 研究動機 .............................................................................. 10
1.4 結論 ...................................................................................... 10
第二章 理論及模擬方法 ................................................................... 11
2.1 平面波展開法 ....................................................................... 11
2.2 有限時域差分法 ................................................................... 12
2.3 品質因子計算 ....................................................................... 17
2.4 共振腔之光侷限 ................................................................... 18
2.5 結論 ...................................................................................... 21
第三章 超高品質光子晶體共振腔設計 ............................................. 22
3.1 漸進式週期光子晶體共振腔原理介紹.................................. 22
3.2 漸進式週期光子晶體共振腔之設計與模擬 .......................... 25
3.2-1 能帶計算 ....................................................................... 26
3.2-2 共振頻率及模態計算 .................................................... 28
3.2-3 Q 值計算 ....................................................................... 32
3.2-4 光侷限之分析 ............................................................... 34
3.3 結論 ...................................................................................... 36
第四章 元件製程與量測 ................................................................... 37
4.1 元件製作方法 ....................................................................... 37
4.2 元件製程結果 ....................................................................... 39
4.3 量測系統介紹 ....................................................................... 41
4.4 光學量測 .............................................................................. 43
4.5 實驗誤差分析與討論 ............................................................ 51
4.6 結論 ...................................................................................... 52
第五章 結論與未來展望 ................................................................... 54
參考文獻 ………………………………………………………………….55
[1]S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
[2]E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059 (1987).
[3]欒丕綱、陳啟昌,「光子晶體—從蝴蝶翅膀到奈米光子學」,二版,五南圖書出版公司,台北 (2010)。
[4]J. D. Joannopoulos, S. G. Johnson, J. N. Winn et al., “Photonic Crystals - Molding the Flow of Light,” Second Edition, Princeton University Press, 41 William Street, Princeton, New Jersey 08540 (2008).
[5]http://www.lostseaopals.com.au/opals/index.asp
[6]A. R. Parker, V. L. Welch, D. Driver et al., “Structural colour - Opal analogue discovered in a weevil,” Nature 426, 786 (2003).
[7]E. Pennisi, “Naturalist''s Surveys Show That British Butterflies Are Going, Going...,” Science 303, 1747 (2004).
[8]http://nanotechweb.org/cws/article/tech/36244
[9]C. Kittle, “Introduction to Solid State Physics,” 7th Ed., John Wiley & Sons, USA (2001).
[10]P. R. Berman, “Cavity quantum electrodynamics,” Academy (1994).
[11]B. D’Urso, O. Painter, J. O’Brien, T. Tombrello, A. Yariv, A. Scherer, “Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavities,” J. Opt. Soc. Am. B 15, 1155 (1998).
[12]O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819 (1999).
[13]O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O’Brien, P. D. Dapkus., “Lithographic Tuning of a Two-Dimensional Photonic Crystal Laser Array,” IEEE Photo. Tech. Lett. 12, 1126(2000).
[14]J. P. Dowling, M. Scalora, M. J. Bloemer, C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896 (1994).
[15]M. I., S. Noda, A. Chutinan, T. Tokuda, M. Murata, G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316 (1999).
[16]W. D. Zhou, J. Sabarinathan, P. Bhattacharya, B.Kochman, E. W. Berg, P. C. Yu, S. W. Pang, “Characteristics of a Photonic Bandgap Single Defect Microcavity Electroluminescent Device,” IEEE J. Quantum Electron. 37, 1153 (2001).
[17]O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819 (1999).
[18]H. Y. Ryu, S. H. Kim, H. G. Park, J. K. Hwang, Y. H. Lee, J. S. Kim, “Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode,” Appl. Phys. Lett. 80, 3883 (2002).
[19]K. Hennessy, C. Reese, A. Badolato, C. F. Wang, A. Imamoğlu, P. M. Petroff, E. Hua, G. Jin, S. Shi, D. W. Prather, “Square-lattice photonic crystal microcavities for coupling to single InAs quantum dots, Appl. Phys. Lett. 83, 3650 (2003).
[20]K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915 (2003).
[21]C. Meier, K. Hennessy, E. D. Haberer, R. Sharma, Y. S. Choi, K. McGroddy, S. Keller, S. P. DenBaars, S. Nakamura, E. L. Hu, “Visible resonant modes in GaN-based photonic crystal membrane cavities,” Appl. Phys. Lett. 88, 031111 (2006).
[22]Y.-S. Choi, K. Hennessy, R. Sharma, E. Haberer, Y. Gao, S. P. DenBaars, S. Nakamura, E. L. Hu, C. Meier, “GaN blue photonic crystal membrane nanocavities,” Appl. Phys. Lett. 87, 243101 (2005).
[23]H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, Y. H. Lee, J. S. Kim, “Nondegenerate monopole-mode two-dimensional photonic band gap laser,” Appl. Phys. Lett. 79, 3032 (2001).
[24]H. G. Park, J. K. Hwang, J. H., H. Y. Ryu, S. H. Kim, J. S. Kim, Y. H. Lee, “Characteristics of Modified Single-Defect Two-Dimensional Photonic Crystal Lasers,” IEEE J. Quantum Electron. 38, 1353 (2002).
[25]A. Sugitatsu, T. Asano, S. Noda, “Line-defect- waveguide laser integrated with a point defect in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 86, 171106 (2005).
[26]S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nature Photon. 1, 449 (2007).
[27]Y. Takahashi, H. Hagino, Y. Tanaka, B. S. Song, T. Asano, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15, 17206 (2007).
[28]C. Kim, W. J. Kim, A. Stapleton, J. R. Cao, J. D. O''Brien, P. D. Dapkus, “Quality factors in single-defect photonic-crystal lasers with asymmetric cladding layers,” J. Opt. Soc. Am. B 19, 1777 (2002).
[29]X. H. Yang, T. J. Schmidt, W. Shan, J. J. Song, B. Goldenberg, “Above room temperature near ultraviolet lasing from an optically pumped GaN film grown on sapphire,” Appl. Phys. Lett. 66, 1 (1995).
[30]X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, H. Cao, ” Ultraviolet photonic crystal laser,” Appl. Phys. Lett. 85, 3657 (2004).
[31]L. M. Chang, C. H. Hou, Y. C. Ting, C. C. Chen, C. L. Hsu, J. Y. Chang, C. C. Lee, G. T. Chen, and J. I. Chyi, "Laser emission from GaN photonic crystals," Appl. Phys. Lett. 89, 071116 (2006).
[32]C. F. Lai, P. Yu, T. C. Wang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. K. Lee, "Lasing characteristics of a GaN photonic crystal nanocavity light source," Appl. Phys. Lett. 91, 041101 (2007).
[33]H. Matsubara, S. Yoshimoto, H. Saito, Y. Jianglin, Y. Tanaka, and S. Noda, "GaN photonic-crystal surface-emitting laser at blue-violet wavelengths," Science 319, 445 (2008).
[34]T. C. Lu, S. W. Chen, L. F. Lin, T. T. Kao, C. C. Kao, P. Yu, H. C. Kuo, S. C. Wang, and S. Fan, "GaN-based two-dimensional surface-emitting photonic crystal lasers with AlN∕ GaN distributed Bragg reflector," Appl. Phys. Lett. 92, 011129 (2008).
[35]K. Rivoire, A. Faraon, and J. Vuckovic, "Gallium phosphide photonic crystal nanocavities in the visible," Appl. Phys. Lett. 93, 063103 (2008).
[36]S. W. Chen, T. C. Lu, and T. T. Kao, "Study of GaN-Based Photonic Crystal Surface-Emitting Lasers (PCSELs) With AlN/GaN Distributed Bragg Reflectors," Selected Topics in Quantum Electronics, IEEE Journal of 15, 885 (2009).
[37]J. Y. Zhang, L. E. Cai, B. P. Zhang, S. Q. Li, F. Lin, J. Z. Shang, D. X. Wang, K. C. Lin, J. Z. Yu, and Q. M. Wang, "Blue-Violet Lasing of Optically Pumped GaN-Based Vertical Cavity Surface-Emitting Laser With Dielectric Distributed Bragg Reflectors," Lightwave Technology, Journal of 27, 59 (2009).
[38]C. H. Lin, J. Y. Wang, C. Y. Chen, K. C. Shen, D. M. Yeh, Y. W. Kiang and C. Yang, "A GaN photonic crystal membrane laser," Nanotechnology 22, 025201 (2011).
[39]K. Sakoda, “Opticcal Properties of Photonic Crystal,” Springer-Verlag, 2004.
[40]K.S.Yee,” Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media,” IEEE Trans. Antennas Propag, 14, 302 (1966).
[41]K. Kawano and T. Kitoh, “Introduction to Optical Waveguide Analysis,” WILEY, (2001).
[42]T. Ochiai, K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B. 63, 125107 (2001).
[43]C. Kim, W. J. Kim, A. Stapleton, J. R. Cao, J. D. O''Brien, P. D. Dapkus, “Quality factors in single-defect photonic-crystal lasers with asymmetric cladding layers,” J. Opt. Soc. Am. B 19, 1777 (2002).
[44]H. Y. Ryu, J. K. Hwang, Y. H. Lee, “The Smallest Possible Whispering-Gallery-Like Mode in the Square Lattice Photonic-Crystal Slab Single-Defect Cavity,” IEEE J. Quantum Electron. 39, 314 (2003).
[45]K. Srinivasan and O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," OPTICS EXPRESS 10, 671 (2002).
[46]K. Srinivasan and O. Painter, "Fourier space design of high-Q cavities in standard and compressed hexagonal lattice photonic crystals," OPTICS EXPRESS 11, 579 (2003).
[47]B. S. Song, S. Noda, T. Asano and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Materials 4, 207 (2005).
[48]Y. Tanaka, T. Asano, and S. Noda, "Design of Photonic Crystal NanocavityWith Q-Factor of ~109," J. Lightwave Technol. 26, 1532 (2008).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 顏元叔:〈現代主義與歷史主義—-兼答葉嘉瑩女士〉,《中外文學》第2卷第7期,1973年12月。
2. 顏元叔:〈現代主義與歷史主義—-兼答葉嘉瑩女士〉,《中外文學》第2卷第7期,1973年12月。
3. 顏元叔:〈現代主義與歷史主義—-兼答葉嘉瑩女士〉,《中外文學》第2卷第7期,1973年12月。
4. 顏元叔:〈現代主義與歷史主義—-兼答葉嘉瑩女士〉,《中外文學》第2卷第7期,1973年12月。
5. 廖炳惠:〈台灣文學中的四種現代性:以《背海的人》下集為例〉,《中外文學》第30卷第6期,2001年11月。
6. 廖炳惠:〈台灣文學中的四種現代性:以《背海的人》下集為例〉,《中外文學》第30卷第6期,2001年11月。
7. 廖炳惠:〈台灣文學中的四種現代性:以《背海的人》下集為例〉,《中外文學》第30卷第6期,2001年11月。
8. 廖炳惠:〈台灣文學中的四種現代性:以《背海的人》下集為例〉,《中外文學》第30卷第6期,2001年11月。
9. 郭玉雯:〈《現代文學小說選集》的現代主義特色〉,《臺灣文學研究集刊》6,2009年8月。
10. 郭玉雯:〈《現代文學小說選集》的現代主義特色〉,《臺灣文學研究集刊》6,2009年8月。
11. 郭玉雯:〈《現代文學小說選集》的現代主義特色〉,《臺灣文學研究集刊》6,2009年8月。
12. 郭玉雯:〈《現代文學小說選集》的現代主義特色〉,《臺灣文學研究集刊》6,2009年8月。
13. 柯慶明:〈情慾與流離——論白先勇小說的戲劇張力〉,《中外文學》第30卷第2期,2001年7月。
14. 柯慶明:〈情慾與流離——論白先勇小說的戲劇張力〉,《中外文學》第30卷第2期,2001年7月。
15. 柯慶明:〈情慾與流離——論白先勇小說的戲劇張力〉,《中外文學》第30卷第2期,2001年7月。
 
系統版面圖檔 系統版面圖檔