(34.239.150.57) 您好！臺灣時間：2021/04/14 22:45

詳目顯示:::

:

• 被引用:0
• 點閱:187
• 評分:
• 下載:51
• 書目收藏:0
 本篇論文，我們提出利用二維光子晶體Mach-Zehnder干涉儀來儲存光能量。所研究的Mach-Zehnder干涉儀是由光子晶體分光器、波導與轉角波導(arm)所構成並利用有限時域差分法(FDTD)來模擬光場與能量分佈。為了能夠儲存能量，我們改變光子晶體Mach-Zehnder干涉儀中部分區域的折射率讓相位差可以產生變化，進一步地使Q值可以自由地操控。目前能量儲存的模擬結果，其Q值大小約為1482。
 In this study, we propose a way to store power of light using a two-dimensional photonic crystal Mach-Zehnder interferometer. The Mach-Zehnder interferometer composed of photonic crystal channel waveguides、beam splitters and arms is simulated by 2-D finite-difference time-domain(FDTD). Using the change of the index of dielectric rods in the photonic crystal arm alters the phase difference to control quality factor (Q factor) of the Mach-Zehnder interferometer structure dynamically. We obtain Q factor = 1482 for the Mach-Zehnder interferometer structure at present.
 摘要....................................................IAbstract...............................................II致謝..................................................III目錄........................................... .......IV圖目錄.................................................VI表目錄................................................ IX第一章 序論........................................... 11.1 光子晶體簡介...................................... 11.2 光子晶體光開關與光儲存............................ 61.3 研究動機.......................................... 141.4 結論.............................................. 15第二章 基本原理....................................... 172.1 平面波展開法(Plane Wave Expansion, PWE)........... 172.2 有限時域差分法(Finite-Difference Time-Domain, FDTD)................................................. 202.3 Q值(Quality factor)計算方法........................242.4 結論.............................................. 25第三章 光子晶體Mach-Zehnder干涉儀..................... 273.1 光子晶體Mach-Zehnder干涉儀結構模擬................ 273.2 光子晶體Mach-Zehnder干涉儀之相位調制模擬.......... 313.3 模擬分析與討論.................................... 333.4 結論.............................................. 34第四章 光子晶體Mach-Zehnder干涉儀型光學式記憶體....... 364.1 模擬結構.......................................... 364.2 光儲存(storage)與讀取(read)....................... 374.3 模擬分析與討論.................................... 414.4 結論.............................................. 42第五章 總結與未來工作................................. 435.1 總結.............................................. 435.2 未來工作.......................................... 44參考文獻.............................................. 46
 [1] 欒丕綱、陳啟昌, “光子晶體-從蝴蝶翅膀到奈米光子學”, 五南圖書出版股份有限公司, 2006.[2] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059 (1987).[3] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).[4] A. Blanco, E. Chomski, S. Grabtchak et al., “large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5micrometres”, Nature 405, 437 (2000).[5] S. Y. Lin, J. G. Fleming, D. L. Hetherington et al., “A three- dimensional photonic crystal operating at infrared wavelengths”,Nature 394, 261 (1998).[6] E. Yablonovitch and T. J. Gmutter, “Photonic Band Structure:The Face-Centered-Cubic Case Employing Nonspherical Atoms”, Phys. Rev. Lett. 67, 2295 (1991).[7] E. Yablonovitch and T. J. Gmutter, “Donor and Acceptor Modes in Photonic Band Structure”, Phys. Rev. Lett. 67, 3380 (1991).[8] Y. Akahane, M. Mochizuki, T. Asano et al., “Design of a channel drop filter by using a donor-type cavity with high-quality factor in a two- dimensional photonic crystal slab”, Appl. Phys. Lett. 83, 1341 (2003).[9] O. Painter, R. K. Lee, A. Scherer et al., “Two-Dimensional Photonic Band-Gap Defect Mode Laser”, Science 284 ,1819 (1999).[10] T. Baba, D. Mori, K. Inoshita et al., “Light Localizations in Photonic Crystal Line Defect Waveguides”, IEEE J. Quantum Electron. 10, 484 (2004).[11] M. Augustin, H.-J. Fuchs, D. Schelle, “Highly efficient waveguide bends in photonic crystal with a low in-plane index contrast”, Opt. Express 11, 3284 (2003).[12] T. Zijlstra, E. van der Drift, M. J. A. de Dood et al., “Fabrication of Two-Dimensional Photonic Crystal Waveguides for 1.5μm in Silicon by Deep Anisotropic Dry Etching”, J. Vac. Sci. Technol. B 17, 2734 (1999).[13] Wikipedia. "Opal", http://en.wikipedia.org/wiki/Opal#Precious_opal.[14] A. R. Parker, and H. E. Townley, “Biomimetics of photonic nanostructures”, Nature 2, 347 (2007).[15] L. P. Biro´, Zs. Ba´lint, K. Kerte´sz et al.,“Role of photonic-crystal- type structures in the thermal regulation of a Lycaenid butterfly sister species pair”, Phys. Rev. E. 67, 021907 (2003).[16] S. Yoshioka and S. Kinoshita,“Polarization-sensitive color mixing in the wing of the Madagascan sunset moth”, Opt. Express 15, 2691 (2007).[17] S. Miller, “Integrated Optics: an introduction”, Bell Syst. Tech. J. 48, 2059 (1969).[18] M. Notomi, A. Shinya, S. Mitsugi et al.,“Waveguides, resonators and their coupled elements in photonic crystal slabs”, Opt. Express 12, 1551 (2004).[19] E. A. Camargo, H. M. H. Chong1 and R. M. De La Rue, “2D Photonic crystal thermo-optic switch based on AlGaAs/GaAs epitaxial structure”, Opt. Express 12, 588 (2004).[20] Y. A. Vlasov, M. O’Boyle1, H. F. Hamann, “Active control of slow light on a chip with photonic crystal waveguides”, Nature 483, 65 (2005).[21] X. Wang, H. Tian and Y. Ji, “Photonic crystal slow light Mach– Zehnder interferometer modulator for optical interconnects”, Journal of Optics 12, 065501 (2010).[22] H.-M. Chen, J. Su, J.-L. Wang et al., “Optically-controlled high- speed terahertz wave modulator based on nonlinear photonic crystals”, Opt. Express 19, 3599 (2011).[23] S. Noda, A. Chutinan and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure”, Nature 407, 608 (2000).[24] Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two- dimensional phonic crystal slabs”, Appl. Phys. Lett. 83, 1512 (2003).[25] Y. Akahane, T. Asano, B.-S. Song and S., “Noda,High-Q photonic nanocavity in a two-dimensional photonic crystal”, Nature425, 944 (2003).[26] B.-S. Song, S. Noda, T. Asano AND Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity”, Nature 4, 207 (2005).[27] Y. Tanaka, J. Upham, T. Nagashima, “Dynamic control of the Q factor in a photonic crystal nanocavity”, Nature 6 , 862 (2007).[28] K. Sakoda, “Optic Properties of Photonic Crystals”, Springer, 2001.[29] Charles Kittel, “Introduction to Solid State Physics”, John Wiley & Sons, Inc.[30] K.S.Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media”, IEEE Trans. Antennas Propag. 14, 302 (1966).[31] K. Kawano, T. Kiton, “Introduction to Optical Waveguide Analysis: Solving Maxwell’s Equations and the Schrödinger Equation,”WILEY, 2001.[32] O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two- dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275 (1999).[33] O. Svelto and D. C. Hanna, “Principles of Lasers”, Third Edition, Springer.[34] C.-C. Chen, H.-D. Chien, and P.-G. Luan, “Photonic crystal beam splitters”, Appl. Opt. 43, 6187 (2004).[35] 簡宏達, “二維雙輸入雙輸出光子晶體分光器”, 國立中央大學光電科學研究所碩士論文, 2003.[36] A. Mekis, J. C. Chen, I. Kurland, S. Fan,High, “Transmission through Sharp Bends in Photonic Crystal Waveguides”, Phys. Rev. Lett. 77, 3787 (1996).[37] M. Notomi, “Manipulating light with strongly modulated photonic crystals”, Rep. Prog. Phys. 73, 096501 (2010).[38] C. Husko, A. D. Rossi, S. Combrié, “Ultrafast all-optical modulation in GaAs photonic crystal cavities”, Appl. Phys. Lett. 94, 021111 (2009).[39] I.-K. Hwang, M.-K. Kim, and Y.-H. Lee, “All-Optical Switching in InGaAsP–InP Photonic Crystal Resonator Coupled With Microfiber”, IEEE Photon. Technol. Lett. 19, 1535 (2007).[40] K. Nozaki, T. Tanabe, A. Shinya et al., “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity”, Nature 4, 477 (2010).[41] Y. Jiang, Wei Jiang, L. Gu, “80-micro interaction length silicon photonic crystal waveguide modulator”, Appl. Phys. Lett. 87, 021101 (2005).[42] T. F. Krauss, “Why do we need slow light?”, Nature 2, 448 (2008).[43] T F Krauss, “slow light in photonic crystal waveguides”, J. Phys. D. 40, 2666 (2007).
 電子全文
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 二維雙輸入雙輸出光子晶體分光器

 1 [35] 簡宏達, “二維雙輸入雙輸出光子晶體分光器”, 國立中央大學光電科學研究所碩士論文, 2003.

 1 漸進式週期光子晶體共振腔之研究 2 光子晶體平板中的耦合共振光波導以及指向性耦合器研究 3 微型陡變熔拉馬氏干涉儀及其於光纖雷射與感測器之應用 4 光子晶體結構中光傳播行為之研究與應用 5 馬克-詹德生醫感測干涉儀 6 具光子晶體之氮化鎵P-I-N型結構光電流特性分析 7 氮化鎵LED表面粗糙對光萃取效率之最佳化研究 8 以Mach-Zehnder式干涉儀做即時光學相位控制 9 光子晶體與圓形光子晶體-設計與製備 10 六角形GaN光子晶體LED之遠場光強分佈 11 利用Mach-Zehnder干涉儀架構之3D立體投影機設計 12 以中空光子晶體光纖共振腔增強法觀測乙炔吸收譜線之研究 13 光學干涉儀之特性與粗細粒料氯離子檢測之應用討論 14 多模光纖干涉儀之感測應用 15 液晶填充分佈式布拉格反射鏡波導

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室