|
[1]H. D. Whyte and T. Bailey, “Simultaneous localization and mapping: Part I,” IEEE Robotics & Automation Magazine, Vol. 13, No. 2, pp.99-110, Jun. 2006. [2]B. E. Boser, I. Guyon, and V. Vapnik, “A training algorithm for optimal margin classifiers,” in Proceedings of ACM Conference on Learning Theory, Jul. 1992. [3]I. W. Tsang, J. T. Kwok, and P.-M. Cheung, “Core vector machines: Fast SVM training on very large data sets,” Journal of Machine Learning Research, Vol. 6, pp. 363-392, Dec. 2005. [4] I. W. Tsang, A. Kocsor, and J. T. Kwok, “Simpler core vector machines with en-closing balls,” in Proceedings of International Conference on Machine Learning, pp.911-918, Jun. 2007. [5]N. Segata and E. Blanzieri, “Fast and scalable local kernel machines,” Journal of Machine Learning Research, Vol. 11, pp. 1883-1926, Mar. 2010. [6]A. Oliva and A. Torralba, “Modeling the shape of the scene: A holistic represen-tation of the spatial envelope,” International Journal of Computer Vision, Vol. 42, No. 3, pp. 145-175, Jan. 2001. [7]J. Wu, H. I. Christensen, and J.M. Rehg, “Visual place categorization: problem, dataset, and algorithm,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4763-4770, Oct. 2009. [8]D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Interna-tional Journal of Computer Vision, Vol. 60, No. 2, pp. 91-110, Nov. 2004. [9]Y. Ke and R. Sukthankar, “PCA-SIFT: a more distinctive representation for local image descriptors,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Jul. 2004. [10]J. M. Morel and G. Yu, “ASIFT: a new framework for fully affine invariant im-age comparison,” SIAM Journal on Imaging Sciences, Vol. 2, No. 2, Apr. 2009. [11]H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “SURF: speeded up robust fea-tures,” Journal of Computer Vision and Image Understanding, Vol. 110, No. 3, pp. 346-359, May 2008. [12]K. Mikolajczyk and C. Schmid “A performance evaluation of local descriptors,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 10, No. 27, pp. 1615-1630, 2005. [13]J. M. Morel and G. Yu, “Is SIFT Scale Invariant?” Inverse Problems and Imag-ing, Vol. 5, No. 1, Feb. 2011. [14]D. Filliat, “A visual bag of words method for interactive qualitative localization and mapping,” in Proceedings of the IEEE/RSJ International Conference on Ro-botics and Automation, pp. 3921-3926, May 2007. [15]P. Viola and M. J. Jones, “Robust real-time face detection,” International Journal of Computer Vision, 57(2):137-154, May. 2004. [16]T.-J. Chin, H. Goh and J.-H. Lim, “Using densely recorded scenes for place recognition,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, pp.2101-2104, Mar. 2008. [17]A. Quattoni and A. Torralba, “Recognizing indoor scenes,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp.413-420, Jun. 2009. [18]A. Pronobis, B. Caputo, P. Jensfelt, and H. I. Christensen, “A discriminative ap-proach to robust visual place recognition,” in Proceedings of the IEEE/RSJ Inter-national Conference on Intelligent Robots and Systems, pp.3829-3836, Oct. 2006. [19]A. Pronobis, O. M. Mozos, and B. Caputo, “SVM-based discriminative accumu-lation scheme for place recognition,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 522-529, May 2008. [20]C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan, “A dual coordinate descent method for large-scale linear SVM,” in Proceedings of Inter-national Conference on Machine Learning, pp.408-415, Jul. 2008. [21]D. M. J. Tax and R. P. W. Duin, “Data domain description using support vectors,” in Proceedings of European Symposium on Artificial Neural Networks, pp. 251-256, Apr. 1999. [22]D. Arthur and S. Vassilvitskii, “K-means++: The advantage of careful seeding,” in 18th Symposium on Discrete Algorithms, 2007. [23]H. Jegou, M. Douze, and C. Schmid, “Product quantization for nearest neighbor search,” IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. 33, No. 1, pp. 117-128, Nov. 2011. [24]A. Pronobis and B. Caputo, “Confidence-based cue integration for visual place recognition,” in Proceedings of the IEEE/RSJ International Conference on Intel-ligent Robots and Systems, pp. 2394-2401, Oct. 2007. [25]A. Pronobis, B. Caputo, P. Jensfelt, and H. I. Christensen, “A realistic bench-mark for visual indoor place recognition,” International Journal of Robotics and Autonomous Systems, Vol. 58, No. 1, pp. 81-96, Jan. 2010. [26]A. Pronobis, O. M. Mozos, B. Caputo, and P. Jensfelt, “Multi-modal semantic place classification,” The International Journal of Robotics Research, Special Issue on Robotic Vision, Vol. 29, No. 2-3, pp. 298-320, Feb. 2010. [27]R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, “LIBLINEAR: A library for large linear classification,” Journal of Machine Learning Research, Vol. 9, pp. 1871-1874, Jun. 2008. [28]N. Segata, “FaLKM-lib v1.0: a library for fast local kernel machines,” Technical Report DISI-09-025. 2009. Software available at http://www. disi.unitn.it/~segata/FaLKM-lib. [29]Y. Tang, Y.-Q. Zhang, N.V. Chawla, and S. Krasser, “SVMs modeling for high-ly imbalanced classification,” IEEE Transactions on Systems, Man, and Cyber-netics, Vol. 39, No. 1, pp. 281-288, Feb. 2009.
|