(3.236.231.14) 您好!臺灣時間:2021/04/15 06:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李建勳
研究生(外文):Chien-hsun Lee
論文名稱:圖案化二氧化矽奈米柱結構應用於氮化鎵發光二極體之研究
論文名稱(外文):Efficiency enhancement of GaN-based Light Emitting Diode prepared on SiO2 nanorod patterned GaN template
指導教授:郭政煌
指導教授(外文):Cheng-Huang Kuo
學位類別:碩士
校院名稱:國立中央大學
系所名稱:照明與顯示科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:72
中文關鍵詞:氮化鎵二氧化矽奈米結構發光二極體
外文關鍵詞:GaNLEDSiO2 nanorod patterned
相關次數:
  • 被引用被引用:0
  • 點閱點閱:125
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
本論文主要研究以有機金屬氣相沉積機台(Organometallic Vapor Phase Epitaxy, OMVPE)成長氮化鎵發光二極體於微米與奈米尺度的圖案化二氧化矽於氮化鎵薄膜/藍寶石基板。實驗中探討微米與奈米尺度的圖案化二氧化矽對氮化鎵發光二極體的影響,因基板運用磊晶側向成長技術(Epitaxial Lateral Overgrowth;ELOG),將能降低缺陷密度,且圖案化二氧化矽結構包覆於氮化鎵薄膜中,而二氧化矽之幾何結構與折射率的差異,增加了光被散射的機率,更進一步因奈米級圖樣化二氧化矽相較於微米級圖樣化二氧化矽有著較多的光散射中心,增強了發光二極體之光萃取率。
成長氮化鎵發光二極體在微米與奈米級圖樣化二氧化矽排列於氮化鎵薄膜(un-doped GaN )/藍寶石基板,以及氮化鎵薄膜(un-doped GaN )/藍寶石基板為實驗對照組。由光電特性量測結果顯示出,在操作電流 20 mA注入下,各自具有大約相同的順向偏壓3.4V,實驗對照組LED C1、微米級LED M1、奈米級LED N1的光輸出功率分別為3.53mW、4.37mW、5.02mW,而光輸出功率LED M1 與LED N1 相對於LED C1 元件各提升23 與42 %。
在二維光強度影像量測中,操作電流 100 mA注入下,可觀察到具有奈米與微米級圖樣化二氧化矽排列於氮化鎵薄膜/藍寶石基板皆優於氮化鎵薄膜/藍寶石基板。且光學顯微鏡下拍攝到氮化鎵發光二極體之奈米與微米級之條狀圖樣化二氧化矽排列形貌,呼應於二維光強度影像分佈,驗證了氮化鎵發光二極體基板上的圖案會增加光的折射和反射會提升元件的光取出效率。為了釐清光輸出功率的提高,以有限時域差分法(FDTD)分析模擬,研究光線在發光二極體的散射路徑。
GaN have emerged as important semiconductor materials for light-emitting diodes (LEDs). However, It was well known that light-extraction efficiency (LEE) of LED is limited mainly by the large difference in refractive index between GaN film and the surrounding air. Since the refractive indexes of GaN and the air are 2.5 and 1. Critical angle is crucially important for the light extraction efficiency of LEDs. It has been shown that one can enhance light output by light scattering layer (e.g., patterned substrate.), photons generated in the active layer will have multiple opportunities to find the escape cone.
In the study, the LED device with the embedded micro-size SiO2 stripe was fabricated. We labeled the LED as LED M1. In order to clarify the light scattering in different scale, we fabricate the LED device with the embedded nano-size SiO2 nanorods stripe. We labeled the LED as LED N1. For comparison, convention LED was also prepared, we labeled as LED C1.
With 20 mA current injection, it was found that output power of LED C1, LED M1 and LED N1 was 3.15mW, 4.37 mW, and 5.07 mW, respectively. To clarify the enhancement in light output power, the finite-difference time-domain (FDTD) analysis is used to study the irradiance behavior of the proposed LED with SiO2 patterned structure. Shows the simulated light emission of proposed LED with SiO2 patterned structure. We can found in this figure, the photon density in nano-size structure was larger than micro-size structure. The result shows that nano sized structure could provide more light scattering center than micro size structure.
In conclusion, we can enhance the 20 mA LED output power by 42% from the LED N1 compared with the conventional LED. The increasing of light scattering centers could reduce the probability of photons restricted in GaN epitaxial layers.
摘要 ................................................... Ⅰ
Abstract ............................................... Ⅲ
致謝 ................................................... Ⅳ
目錄 ................................................... Ⅴ
圖目錄 ................................................. Ⅷ
表目錄 ................................................. Ⅹ
第一章 序論 ............................................. 1
第二章 實驗原理與量測系統 ............................... 4
2.1 實驗原理 .......................................... 4
2.1.1 圖案化基板對氮化鎵磊晶成長之影響 .............. 4
2.1.2 圖案化基板對光散射之影響 ...................... 7
2.2 量測系統 .......................................... 8
2.2.1 掃描電子顯微鏡(SEM) ........................... 8
2.2.2 X-ray 繞射儀 .................................. 8
2.2.3 原子顯微鏡量測系統 ............................ 9
2.2.4電流-電壓量測系統............................... 9
2.2.5 積分球量測系統 ............................... 10
2.2.6 二維光強度影像量測系統 ....................... 10
第三章 實驗製程方法與步驟 .............................. 11
3.1 圖案化二氧化矽於氮化鎵基板之製程 ................. 11
3.1.1 二氧化矽條狀化排列於氮化鎵基板製程 ........... 11
3.1.2 二氧化矽奈米柱條狀化排列於氮化鎵基板製程 ..... 13
3.2 氮化鎵發光二極體元件之製程 ....................... 16
第四章 氮化鎵薄膜之材料分析 ............................ 20
4.1 氮化鎵薄膜之電子式掃描顯微鏡量測分析 ............. 21
4.2 氮化鎵薄膜之 X-ray 繞射儀量測分析 ................ 22
4.3 氮化鎵薄膜之單位面積缺陷密度量測分析 ............. 23
4.4 結論與分析 ....................................... 24
第五章 氮化鎵發光二極體元件之比較分析................... 26
5.1 氮化鎵發光二極體元件成長於奈米與微米等級圖樣化二氧化矽排列於氮化鎵薄膜/藍寶石基板之比較分析................. 27
5.1.1氮化鎵發光二極體元件之電流-電壓量測分析........ 27
5.1.2氮化鎵發光二極體元件之二維影像量測分析......... 28
5.1.3氮化鎵發光二極體元件之光輸出功率-電壓量測分析.. 29
5.1.4氮化鎵發光二極體元件之模擬分析................. 30
5.1.5結論與分析 .................................... 31
5.2 改變二氧化矽密度對氮化鎵發光二極體元件之光電特性研究.......................................................32
5.2.1 改變二氧化矽密度對發光二極體元件之光輸出功率量測分析.................................................... 32
第六章 結論與未來工作 .................................. 33
6.1 結論 ............................................. 33
6.2 未來工作 ......................................... 34
參考文獻 ............................................... 35
[1] E. F. Schubert, J. K. Kim, H. Luo, and J.-Q. Xi C"Solid-state lighting - A benevolent technology," Rep. Prog. Phys. 69, 3069-3098 (2006).
[2] S.J. Pearton, J.C. Zolper, R.J.Shul, F. Ren, "GaN: Processing, defects, and devices", J. Appl. Phys.68, 1,(1999).
[3] E.Fred Schubert, Light-emitting diodes, second edition, p.88~93.
[4] Ok-Hyun Nam, Michael D. Bremser, Tsvetanka S. Zheleva, and RobertF.Davis, Appl. Phys. Lett. 71 (18), 3 November (1997).
[5] 1TSVETANKA S. ZHELEVA, SCOTT A. SMITH,DARREN B.THOMSON,KEVIN J. LINTHICUM, PRADEEP RAJAGOPAL, and ROBERT F. DAVIS , Journal of Electronic Materials, Vol. 28, No. 4,(1999).
[6] D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, S. Y. Huang, and C. F. Lin, Appl. Phys. Lett. 89, 161105 (2006).
[7] Dong-Hun KANG, Jae-Chul SONG, Byung-Young SHIM, Eun-A KO,Dong-Wook KIM , Santhakumar KANNAPPAN, and Cheul-Ro LEE, Jpn. J. Appl. Phys. Vol. 46, No. 4B, pp. 2563–2566 (2007).
[8] Tae Su OH, Seung Hwan KIM, Tae Ki KIM, Yong Seok LEE, Hyun JEONG, Gye Mo YANG, and Eun-Kyung SUH, Jpn. J. Appl. Phys. Vol. 47, No.7, pp.5333–5336(2008).
[9] Haiyong Gao, Fawang Yan, Yang Zhang, Jinmin Li, Yiping Zeng, and Guohong Wang, Appl. Phys. Lett. 93, 081108 (2008).
[10] Walter Schottky Institute, Technical University Munich, Am Coulombwall, D-85748 Garching, Appl. Phys. Lett. 83,112325 (1998).
[11] C. H. Kuo, L. C. Chang, C. W. Kuo, and G. C. Chi, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 22, NO. 4, FEBRUARY 15, (2010).
[12] E. Fred Schubert, Light-emitting diodes, second edition, p.133~p.138
[13] B. Beaumont, Ph. Venne′gue`s, and P. Gibart1) phys. stat.sol. (b) 227, No. 1, p.1–43 (2001).
[14] Pierre Gibart . Rep. Prog. Phys. 67 p.667–715 (2004).
[15] D. S. Wuu et al. Appl. Phys. Lett. 89, 161105 (2006).
[16] Z. Huang, C. C. Lin, and D. G. Deppe, pontaneous Lifetime and Quantum Efficiency in Light Emitting Diode Affected by a Close Metal Mirror. IEEE Journal of Quantum Electronics, Vol.29. No. 12. December (1993).
[17] M.L. Wu, Y.C. Lee, P.S. Lee, C.H. Kuo, J.Y. Chang, Jpn. J. Appl. Phys. Lett., vol. 47, no. 8, pp. 6757–6759,(2008).
[18] W.C. Lai, Y.Y. Yang, L.C. Peng, S.W. Yang, Y.R. Lin, J.K. Sheu, Appl. Phys. Lett. 97, 081103, (2010).
[19] E. Fred Schubert, Light-emitting diodes, second edition, p.91~p.93.
[20] T. Fujii et al. Appl. Phys. Lett. Vol.84, No.6, pp.855,(2004).
[21] R. H. Horng et al. Jpn, J. Appl. Phys., Vol.43, No.5A,pp.2510, (2004).
[22] Y. J. Lee et al. JOURNAL OF DISPLAY TECHNOLOGY, VOL. 3,NO. 2, (2007).
[23] W.K. Wang, et al. IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL.41, NO. 11,(2005).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔