|
References [1] G. Wei, Z. Wang, J. Lam, K. Fraser, G.P. Rao, X. Liu, “Robust filtering for stochastic genetic regulatory networks with time-varying delay,” Mathematical Biosciences, vol. 220, pp. 73-80, 2009. [2] L. Chen, K. Aihara, “Stability of genetic regulatory networks with time delay,” IEEE Trans. Circuits Syst I, vol. 49 pp. 602-608, 2002. [3] T. Gardner, C. Cantor, J. Collins, “Construction of a genetic toggle switch in Escherichia coli,” Nature, vol. 403, pp. 339-342, 2000. [4] A. Becskei, L. Serrano, “Engineering stability in gene networks by autoregulation,” Nature, vol. 405, pp. 590-593, 2000. [5] W. Yu, J. Lu, G. Chen, Z. Duan, Q. Zhou, “Estimating Uncertain Delayed Genetic Regulatory Networks: An Adaptive Filtering Approach,” IEEE Transactions on Automatic Control, vol. 54, no. 4, pp. 892-897, 2009. [6] D. Lockhart and E. winzeler, “Genomics, gene expression and DNA arrays,” Nature, vol. 405, no. 6788, pp. 827-836, 2000. [7] G. Mclachlan, K. Do, and C. Ambroise, “Analyzing Microarray Gene Expression Data,” Hoboken, NJ: Wiley, 2004. [8] T. Velten, H. H. Ruf, D. Barrow, N. Aspragathos, P. Lazarou, E. Jung, “Packaging of bio-MEMS: strategies, technologies, and applications,” IEEE Transactions on Advanced Packaging , vol. 28, pp. 533-546, 2005. [9] R. Bashir, “BioMEMS: State-of-the-art in detection, opportunities and Prospects,” Advanced Drug Delivery Reviews, vol. 56, pp. 1565-1586, 2004. [10] H. Bolouri and E. H. Davidson, “Modeling transcriptional regulatory networks,” BioEssay, vol. 24, pp. 1118-1129, 2002. [11] H. De Jong, “Modeling and simulation of genetic regulatory systems: A literature review,” J. Comp. Biol., vol. 9, pp. 67-103, 2002. [12] A. Becskel and L. Serrano, “Engineering stability in gene networks by autoregulation,” Nature, vol. 405, no. 6786, pp. 590-593, 2000. [13] J. Capo, F. Ren, “Exponential stability of discrete-time genetic regulatory networks with delays,” IEEE Transactions on Neural Networks, vol. 19, pp. 520-523, 2008. [14] Z. Wang, H. Gao, J. Cao and X. Liu, “On delayed genetic regulatory networks with polytopic uncertainties: robust stability analysis,” IEEE Trans. Nanobioscience, vol. 7, pp. 154-163, 2008. [15] S. Huang, “Gene expression profilling, genetic networks, and cellular states: An integrating concept for tumorigenesis and drug discovery,” J. Molecular Med., vol. 77, pp. 469-480, 1999. [16] I. Shmulevich, E. R. Dougherty, Wei Zhang, “From Boolean to probabilistic Boolean networks as models of genetic regulatory networks,” Proceedings of the IEEE, vol. 90, no. 11, pp. 1778-1792, 2002. [17] H. Bolouri and E. H. Davidson, “Modeling transcriptional regulatory networks,” BioEssays, vol. 24, no. 12, pp. 1118-1129, 2002. [18] M. de Hoon, S. Imoto, K. Kobayashi, N. Ogasawara, S. Miyano, “Infering gene regulatory networks from time-ordered gene expression data of bacillus subtilis using differential equations,” Proc. Pacific Symposium on Biocomputing, vol. 8, pp. 17-28, 2003. [19] T. Akutsu , S. Kuhara , O. Maruyama , S. Miyano, “Identification of gene regulatory networks by strategic gene disruptions and gene overexpressions,” Proceedings of the ninth annual ACM-SIAM symposium on Discrete algorithms, pp. 695-702, 1998. [20] J. Chen, S. Lonardi, Biological Data Mining, Chapman and Hall/CRC Press, 2009. [21] L. Chen and K. Kithara, “Stability of genetic regulatory networks with time delay,” IEEE Transactions on Circuits and Systems-I: Fundamental theory and applications, vol. 49, pp.602-608, 2002. [22] V. Balakrishnan and E. Feron, Eds., “Linear matrix inequalities in control theory and applications,” Int. J. Robust Nonlinear Control, vol. 6, pp. 869-1099, 1996. [23] C. L. Lin, C. C. Lai, T. H. Huang, “A neural network for linear matrix inequality problems,” IEEE Transactions on Neural Networks, vol. 11, no. 5, pp. 1078-1092, 2000. [24] S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia, 1994. [25] W. Michiels, S. L. Niculescu, Stability and Stabilization of Time-Delay Systems. SIAM, Philadelphia, 2007. [26] X. L. Hu, “Dynamic system methods for solving mixed linear matrix inequalities and linear vector inequalities and equalities,” Applied Mathematics and Computation, vol. 216, pp. 1181-1193, 2010. [27] C. Y. Lu, “Robust Control of Time-Delay Systems: A Linear Matrix Inequality Approach,” Ph.D. dissertation, Department of Electrical Engineering of National Cheng Kung University, Tainan, Taiwan, 2004. [28] J. T. Tsai, T. K. Liu and J. H. Chou, “Hybrid Taguchi-Genetic Algorithm for Global Numerical Optimization,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 4, pp. 365-377, 2004. [29] J. T. Tsai, J. H. Chou and T. K. Liu, “Tuning the Structure and Parameters of a Neural Network by Using Hybrid Taguchi-Genetic Algorithm,” IEEE Transactions on Neural Networks, vol. 17, no. 1, pp. 69-80, 2006. [30] W. H. Ho, C. S. Chang, “Genetic-algorithm-based artificial neural network modeling for platelet transfusion requirements on acute myeloblastic leukemia patients,” Expert Systems with Applications, vol. 38, no. 5, pp. 6319-6323, 2011. [31] S. H. Chen, J. H. Chou, C. J. Chen, “Robust-optimal active vibration controllers design for the uncertain flexible mechanical systems possessing integrity via genetic algorithm,” International Journal of Mechanical Sciences, vol. 50, no. 3, pp. 455-465, 2008. [32] W. H. Ho, S. H. Chen, T. K. Liu, J. H. Chou, “Design of robust-optimal output feedback controllers for linear uncertain systems using LMI-based approach and genetic algorithm,” Information Sciences, vol. 180, no. 23, pp. 4529-4542, 2010. [33] W. H. Ho, J. T. Tsai, T. K. Liu and Jyh-Horng Chou, “Optimal state-feedback control of time-varying TS-Fuzzy model based systems by using an integrative computation approach, Int. J. of Innovative Computing, Information and Control, vol. 3, pp. 873-885, 2007. [34] W. H. Ho, J. T. Tsai, B. T. Lin, J. H. Chou, “Adaptive network-based fuzzy inference system for prediction of surface roughness in end milling process using hybrid Taguchi-genetic learning algorithm,” Expert Systems with Applications, vol. 36, no. 2, pp. 3216-3222, 2009. [35] J. Willems, “Dissipative dynamical systems-Part I: General theory,” Arch. Rational Mech. Analy., vol. 45, pp. 321-351, 1972. [36] J. Willems, “Dissipative dynamical systems-Part II: Linear systems with quadratic supply rates,” Arch. Rational Mech. Analy., vol. 45, pp. 352-393, 1972. [37] D. Hill and P. Moylan, “The stability of nonlinear dissipative systems,” IEEE Trans. Automatic Control, vol. 21, no. 5, pp. 708-711, 1976. [38] D. Hill and P. Moylan, “Dissipative dynamical systems: Basic input-output and state properties,” J. franklin Inst., vol. 309, pp. 327-357, 1980. [39] S. Xie, L. Xie, “Robust dissipative control for linear systems with dissipative uncertainty and nonlinear perturbation,” Systems & Control Letters, vol. 29, pp.255-268, 1997. [40] J. C. Lo, D. L. Wu, “Dissipative filtering for discrete fuzzy systems,” IEEE International Conference on Fuzzy Systems, pp.361-365, 2008. [41] D. Hill and P. Moylan, “Stability results for nonlinear feedback system,” Automatica, vol. 13, pp. 377-382, 1977. [42] L. O. Chua, “Passivity and complexity,” IEEE Trans. Circuits & Systems I: Fundamental Theory and Applications, vol. 46, pp. 71-82, 1999. [43] L. Xie, M. Fu, and H. Li, “Passivity analysis and passification for uncertain signal processing,” IEEE Trans. Signal Processing, vol. 46, pp. 2394-2403, 1998. [44] S. Commuri and F. L. Lewis, “CMAC neural networks for control of nonlinear dynamical systems: structure, stability, and passivity,” Automatica, vol. 33, pp. 635-641, 1997. [45] G. Calcev, R. Gorez, and M. De Neyer, “Passivity approach to fuzzy control system,” Automatica, vol. 34, pp.339-344, 1998. [46] C. Y. Lu, H. H. Tsai, T. J. Su, J. S. H. Tsai, C. W. Liao, “A Delay-Dependent Approach to Passivity Analysis for Uncertain Neural Networks with Time-varying Delay,” Neural Processing Letters, vol. 51, pp. 237-246, 2008. [47] B. Chen, H. Li, C. Lin, Q. Zhou, “Passivity analysis for uncertain neural networks with discrete and distributed time-varying delays,” Physics Letters A, vol. 373, pp. 1242-1248, 2009. [48] J. Fu, H. Zhang, T. Ma and Q. zhang, “On passivity analysis for stochastic neural networks with interval time-varying delay,” Neurocomputing, vol. 73, pp. 795-801, 2010. [49] W. Yu, “Passivity analysis for dynamic multilayer neuro identifier,” IEEE Trans. Circuits & Systems I, Fundm. Theory Appl., vol. 50, pp. 173-178, 2003. [50] Q. C. Zhong, Robust Control of Time-delay Systems. Springer-Verlag, London, 2006. [51] E. K. Boukas and Z. K. Liu, Deterministic and Stochastic Time Delay Systems. Birkhauser, Boston, 2002. [52] S.-I. Niculescu, Delay Effects on Stability. Springer-Verlag, London, 2001. [53] M. S. Mahmoud, P. Shi, Methodologies for Control of Jump Time-delay. Springer Science, 2004. [54] S. I. Niculescu, A. Trofino Nito, J. M. Dugard. L. Dugard, “Delay-dependent stability of linear systems with delayed state: an LMI approach,” Proceedings of the 34th IEEE Conference on Decision and Control, vol. 2, pp.1495-1496, 1995. [55] S. I. Niculescu, E. I. Verriest, L. Dugard and J. M. Dugard, “Stability of linear systems with delayed state,” a guide tour in Stability and Control of Time-Delay Systems, L. Dugard and E. I. Verriest, Eds, Lecture Notes in Control and Information Sciences, vol. 228, pp. 1-71, Springer-Verlag, London, 1997. [56] P. Smolen, D. Baxter, J. Byrne, “Mathematical modeling of gene networks,” Neuron, vol. 26, pp. 567-580, 2000. [57] C. Li, L. Chen and K. Aihara, “Stability of genetic networks with SUM regulatory logic: Lure systems and LMI approach,” IEEE Trans. Circuits and Systems-I: Regular Papers, vol. 53, pp. 2451-2458, 2006. [58] I. Shmulevich, E. R. Dougherty, S. Kim and W. zhang, “Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks,” Bioinformatics, vol. 18, pp. 261-274, 2002. [59] T. Chen, H. L. He, G. M. Church, “Modeling gene expression with differential equations,” Pacific Symposium of biocomputing, pp. 29-40, 1999. [60] Nicholas A. M. Monk, “Oscillatory expression of hes1, p53, and NF-kappaB driven by transcriptional time delay,” Current Biology, vol. 13, pp. 1409-1413, 2003. [61] B. Grammaticos, A. S. Carstea and A. Ramani, “On the dynamics of a gene regulatory network,” J. Physics A: Mathematical and General, vol. 39, pp. 2965-2971, 2006. [62] Q. Zhou, S. Xu, B. Chen, H, Li and Y. Chu, “Stability analysis of delayed genetic regulatory networks with stochastic disturbance,” Physics Letters A, vol. 373, pp. 3715-3723, 2009. [63] H. Wu, X. Lioa, S. guo, W. Feng and Z. Wang, “Stochastic stability for uncertain genetic regulatory networks with interval time-varying delays,” Neurocomputing, vol. 72, pp. 3263-3276, 2009. [64] F. Ren and J. Cao, “Asymptotic and robust stability of genetic regulatory networks with time-varying delays,” Neurocomputing, vol. 71, pp. 834-842, 2008. [65] C. Y. Lu and C. W. Liao, “Design of delay-range-dependent robust controller for uncertain genetic regulatory networks with interval time-varying delays,” Automatic Control and Computer Science, vol. 44, pp. 234-245, 2010. [66] V. Bevelevich, Classical Networks Synthesis, New York: Van Nostrand, 1968. [67] M. Vidyasagar, Nonlinear Systems Analysis, Prentice Hall, Englewood Cliffs, NJ, 1993. [68] L. Chen and K. Aihara, “Stability and bifurcation analysis of differential-difference-algebraic equations,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 48, no. 3, pp. 308-326, 2001. [69] J. M. Mahaffy and C. V. Pao, “Models of genetic control by repression with time delays and spatial effects,” J. Math. Biol., vol. 20, pp. 39-57, 1984. [70] F. Wu, “Stability analysis of genetic regulatory networks with multiple time delays,” in: Proceedings of the 29th Annual International Conference of the IEEE EMBS Cite International, Lyon, 2007. [71] G. Wei, Z. Wang, H. Shu, K. Fraser, and X. Liu, “Robust filtering for gene expression time series data with variance constraints,” Int. J. Comput. Math., vol. 84, no. 5, pp. 619-633, 2007. [72] J. Liang, J. Lam, and Z. Wang, “State estimation for Markov-type genetic regulatory networks with delays and uncertain mode transition rates,” Physics Letters A, vol. 373, pp. 4328-4337, 2009. [73] J. T. Tsai , W. H. Ho, J. H. Chou, and C. Y. Guo, “Optimal approximation of linear systems using Taguchi-sliding-based differential evolution algorithm,” Applied Soft Computing, vol. 11, no. 2, pp. 2007-2016, 2011. [74] M. Gen, R. Cheng, Genetic Algorithms and Engineering Design, John Wiley and Sons, New York, 1997. [75] G. Taguchi, S. Chowdhury, S. Taguchi, Robust Engineering, McGraw-Hill, New York, 2000. [76] Y. Wu, Taguchi Methods for Robust Design, The American Society of Mechanical Engineers, New York, 2000.
|