(34.236.244.39) 您好!臺灣時間:2021/03/09 19:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:史景文
研究生(外文):Ching-Wen Shih
論文名稱:溶膠凝膠之CMOS MEMS氣體感測研究
論文名稱(外文):Research on Sol-Gel CMOS MEMS Gas Sensor
指導教授:吳宗益沈志雄沈志雄引用關係
指導教授(外文):Tsung-Yi WuChih-Hsiung Shen
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:積體電路設計研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:76
中文關鍵詞:氣體感測器二氧化錫互補性氧化金屬半導體微機電系統一氧化碳
相關次數:
  • 被引用被引用:0
  • 點閱點閱:237
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
隨著工業與科技發展迅速,空氣汙染之日益嚴重。人們對於氣體感測器的需求逐漸提高。在眾多的感測器研究之中,氣體感測器的應用也越來越趨廣泛。伴隨著近年來微機電(MEMS)技術的快速進步,使原本體積龐大且生產成本較高的機械得以完成在一微小晶片之中,不僅可以降低生產成本以及達到輕薄短小的體積需求,更因為採用CMOS製程得以在性能上面整合電路與微機電結構,得以使工作效能上更優於傳統之機械結構。
本論文提出一CMOS MEMS氣體感測器,透過台積電0.35μm 2P4M 標準CMOS製程製作並搭配濕蝕刻做後製成。設計方面我們使用多晶矽層測製作微型加熱器以提供工作溫度,並使用第二層金屬層和第四層金屬層做為A電極而第三層金屬層做微電極B,最後我們搭配使用以溶膠凝膠法所製作的感測薄膜,用以偵測一氧化碳氣體。
文中我們將探討感測器的元件設計與後製程的製作以及對溶膠凝膠法探討,並對於氣體感測器對一氧化碳的靈敏度做分析,且於相對濕度感測做研究實驗。

Abstract
Because of the rapid industrial and technological development, air pollution was getting worse. People increase the demand for gas sensors day by day. Nowadays many researches study for sensors, the application of gas sensors is increasingly being used. In recent years, along with micro-electromechanical system (MEMS) technology progressed so fast that the bulky and high cost production machinery could be implemented in a small chip. The CMOS MEMS chip not only could reduce the cost of production and reach produce to short and small volume, but also could has better performance than the traditional machine because CMOS process could integrate the circuit and MEMS structure.
This thesis proposes a CMOS MEMS CO gas sensor which is fabricated by TSMC (Taiwan Semiconductor Manufacturing Company) 0.35μm 2P4M-CMOS process and wet etching of post process. We design a CMOS MEMS gas sensor and use poly1 to be the micro-heater for providing the working temperature, and use metal2 and metal4 to be the electrode A, metal3 to be the electrode B. Finally we use the sol-gel method to produce tin oxide sensing film for sensing carbon monoxide.
In this thesis, we will introduce the post-process and CMOS process and production of sensing film by using sol-gel method. Finally we analyze the sensitivity of carbon monoxide by using CMOS MEMS gas sensor, and do the experimentation for relative humidity (%RH).
Keywords: Gas sensor, Tin oxide, CMOS MEMS, Carbon monoxide

Contents
Abstract in Chinese I
Abstract in English II
Acknowledgements in Chinese III
Chapter 1 Introduction 01
1-1 MEMS Introduction 01
1-2 Motivation and Background 02
1-3 Background of Gas Sensor 04
1-4 Biotechnology 06
1-5 CMOS Technology 06
1-6 System on Chip (SOC) 08
1-7 Organization of Thesis 09
Chapter 2 Design of CMOS MEMS Gas sensor 10
2-1 Investigation of CO and CO Gas Sensor 11
2-2 Fabrication Technologies Process 13
2-2-1 Surface Micromachining Technology 13
2-2-2 Introduction of CMOS Process 14
2-2-3 Pre-CMOS Micromachining 14
2-2-4 Intra-CMOS Micromachining 18
2-2-5 Post-CMOS Micromachining 20
2-3 Principles of Sensor 23
2-4 Conductive theory of SnO2 25
2-4-1 Features introduction of SnO2 25
2-4-2 Theory of Electric Conduction by SnO2 26
2-4-3 Band Diagram about SnO2 Contact with N-type Polysilicon 29
Chapter 3 Design and Fabrication of CMOS MEMS Gas
Sensor 32
3-1 Function of Sensor Structure 33
3-1-1 Design Process of CO Gas Sensor 33
3-1-2 Device Process of CMOS MEMS CO Gas Sensor 34
3-2 Circuit of CMOS MEMS Gas Sensor 37
3-2-1 Rail-to-Rail OPA Amplifier 37
3-2-2 Simulation of Rail-to-Rail OPA 41
3-3 Simulation of Vertical Cross-shaped Structure 44
3-4 Advantages Sol-gel method 47
3-5 Process of Inorganic Metal Salt Tin Chloride in Solution 48
3-5-1 DI Water for Solution of Sol-gel 48
3-5-2 Alcohol for Solution of Sol-gel 50
3-6 Experimental Procedure of Sol-gel Method 51
Chapter 4 Fabrication of Sensor chip and Measurement 55
4-1 Architecture of Sensor 56
4-2 Vertical Cross-shaped CO Gas Sensor 57
4-3 Comparison between Doping and Using Spin-coater 62
4-4 Experimental Results of CMOS MEMS Gas Sensor 65
4-4-1 Measurement Equipment of CO Experiment 65
4-4-2 Measure Step 66
4-5 Experimental Results 67
Chapter 5 Conclusion and Future Prospects 70
5-1 Conclusion 70
5-2 Part of Innovation 72
5-3 Future Prospect 72
Reference 73
Books 76

Figure Contents
Fig. 1-1 Multi-function System Chip 01
Fig. 1-2 Micro gas sensor 04
Fig. 1-3 Cross-section of IBM’s 90nm CMOS technology 06
Fig. 1-4 Schematic cross-section of CMOS MEMS process 07
Fig. 2-1 (a) M3EMS technology by Sandia National Laboratories 15
Fig. 2-1 (b) Mod MEMS Technology by Analog Devices and UC Berkeley 16
Fig. 2-2 Energy band of N-type polysilicon not contact with tin dioxide and gas 29
Fig. 2-3 Energy band of SnO2 contact atmosphere 30
Fig. 2-4 Energy band about CO adsorbed by SnO2 31
Fig. 3-1 Design process of CMOS MEMS gas sensor 33
Fig. 3-2 Input stage architecture of Rail to Rail OPA 38
Fig. 3-3 Design process of Rail-to-Rail OPA 39
Fig. 3-4 Rail to Rail OP Amplifier circuit 40
Fig. 3-5 Structure of sensor 44
Fig. 3-6 Remove the oxide layer by CIC post-process 45
Fig. 3-7 Simulating the heater structure (Poly1) by CoventorWare 2008 45
Fig. 3-8 Heat distribution (I=10μA) 46
Fig. 3-9 Heat distribution (I=20μA) 46
Fig. 3-10 Heat distribution (I=30μA) 47
Fig. 3-11 Oxyhydroxide transforms into colloidal gel 49
Fig. 3-12 Polymer molecule formed from SnCl2‧2H2O 50
Fig. 3-13 Using SnCl4 as the precursor preparation of tin dioxide by sol-gel method 53
Fig. 3-14 Addition of organic solvent after the polymer film shrinkage 54
Fig. 4-1(a) Single structure for the gas sensing element of SEM 55
Fig. 4-1(b) Sensor array structure for the sensor of SEM 55
Fig. 4-2 Post-process of CMOS MEMS gas sensor 58
Fig. 4-3 Function of CO gas sensor 59
Fig. 4-4 Confirmation about the floating structure 61
Fig. 4-5(a) Full chip (after etching process) 62
Fig. 4-5(b) Full chip has been coated with SnO2 62
Fig. 4-6(a) Doping by micro-dropper 63
Fig. 4-6(b) Using spin-coater 63
Fig. 4-7(a) Thickness of using micro-dropper 64
Fig. 4-7(b) Thickness of using spin-coater 64
Fig. 4-8 Measurement equipment of the CO gas experiment 65
Fig. 4-9 Schematic diagram of the measurement process 66
Fig. 4-10 CMOS MEMS gas sensor chip 68
Fig. 4-11 Measure data of CO concentration (ppm) correspond with output voltage 68
Fig. 4-12 Measure data of the relative humidity (%RH) correspond with output
voltage 69
Table Content
Tab. 2-1 CO Impact on Human Body 12
Tab. 2-2 CMOS based micro-systems by pre-CMOS process 17
Tab. 2-3 CMOS-based micro-systems by intra-CMOS process 19
Tab. 2-4 CMOS-based micro-systems by add-on post-CMOS process 21
Tab. 2-5 CMOS-based micro-systems by post-CMOS process 22
Tab. 2-6 Materials of semiconductor-type correspond to detection gas 24
Tab. 3-1 Specifications list of Rail-to-Rail OPA 43
Tab.3-2 Comparison between Sol-gel and traditional method 48
Tab.4-1 Post-process of the vertical cross-shaped CO gas sensor 60



Reference
[1] Lal, R.; Apte, P.R.; Bhat, N.K.; Bose, G.; Chandra, S.; Sharma, D.K., “MEMS: technology, technology, design, CAD and applications” Design Automation Conference, 7-11 Jan. 2002 pp.24 – 25.
[2] Markus Graf, Diego Barrettino, Martin Zimmermann, Andreas Hierlemann, Henry Baltes, Simone Hahn, Nicolae Bârsan, and Udo Weimar, “CMOS Monolithic Metal–Oxide Sensor System Comprising a Microhotplateand Associated Circuitry”, IEEE SENSORS JOURNAL, vol. 4, NO. 1, February. 2004.
[3] Micromachine Devices I (2) (1996).
[4] Shengyuan Yang; Saif, T. “Mechanical response of single living cells by bio-MEMS sensors” Micro Electro Mechanical Systems, 2004. 17th IEEE International Conference on. (MEMS) pp.265 – 267.
[5] J.D. Plummer, M.D. Deal, P.B. Griffin, Silicon VLSI Technology: Fundamentals, Practice and Modeling, Prentice Hall: Englewood Cliffs, NJ, 2000.
[6] Apple Computer, G5 Processor, http://www.apple.com/g5processor/.
[7] J. D. Plummer, M.D. Deal, P. B. Griffin, Silicon VLSI Technology: Fundamentals Fundamentals, Practice and Modeling; Prentice Hall: Englewood Cliffs, NJ, 2000.
[8] R. Muanghlua, S. Cheirsirikul, and S. Supadech “The Study of Silicon Thermopile” THNCON 2000. pp.226 – 229 vol.3.
[9] O. Brand, H. Baltes, “CMOS-based microsensors and packaging” Sens. Actuators A 2001, 92, 1-9.

[10]H. Baltes, O. Brand, A. Hierlemann, D. Lange, C. Hagleitner, “CMOS MEMS Presence and future.” In: Proc. IEEE Micro Electro Mechanical Systems 2002 (MEMS 2002); 2002, pp. 459-466.
[11] J. J. Allen, R.D. Kinney, J. Sarsfield, M.R. Daily, J.R. Ellis, J.H. Smith, S. Montague, R.T. Howe, B. E. Boser, R. Horowitz, A.P. Pisano, M.A. Lemkin, W. A. Clark, T. Juneau, “Integrated micro electro mechanical sensor development for inertial applications.” IEEE Aerospace Electron. Syst. Mag. 1998, 13, pp. 36–40.
[12] J.M. Bustillo, R.T. Howe, R. S. Muller, “Surface micromachining for microelectromechanical systems.” Proc. IEEE, 1998, 86, pp. 1552–1574.
[13] J. Smith, S. Montague, J. Sniegowski, J. Murray, P. McWhorter, “Embedded micromechanical devices for the monolithic integration of MEMS with CMOS.” In: Proc. IEEE IEDM ’95 1995, pp. 609–612.
[14] J.M. Bustillo, G. K. Fedder, C.T.-C. Nguyen, R.T. Howe, “Process technology for the modular integration of CMOS and polysilicon microstructures.” Microsys. Technol. 1994, 1, pp. 130–141.
[15] S. Sugiyama, K. Kawahata, H. Funabashi, M. Takigawa, I. Igarashi, “A 32*32 (1k)-element silicon pressure-sensor array with CMOS processing circuits.” Electron. Commun. Jpn, Part 2 (Electronics) 1992, 75, pp. 64–76.
[16] S. Sugiyama, K. Kawahata, M. Yoneda, I. Igarashi, “Tactile image detection using a 1k-element silicon pressure sensor array.” Sens. Actuators A 1990, 22, pp. 397–400.
[17] S. A. Pianaor: J. Mater. Sci. Lett., 14(1995)692.
[18] H. Pink, L. Treitinger and L. Vite: Japanses J. of Appl. Phys., 19(1980)513.
[19] 范成至: 以二氧化錫為氣體感測材料之特性探討, 國立
交通大學光電工程研究所碩士論文1994。
[20] J. Watson, K. Ihokura and G. S V Coles: Meas. Sci. Technol., 4(1993)711.
[21] J. Ding, T. J. McAvoy, R. E. Cavicchi, and S. Semancik, "Surface state trapping models for SnO2 based microhotplate sensors," Sens. Actuator
B, vol. 77, pp. 597-613, 2001.
[22] J. D. Mackenzie, “Glasses from Melts and Glasses from Gels”, J. Non -Crystalline Solids, 48 (1982) 1.
[23]R. S. Hiratsuka, C. V. Santilli and D. V. Silva: J. Non-Crys. Solids, pp. 147-148(1992)67.
[24] A. Smith, J. M. Laurent, D. S. Smith and J. P. Bonnet, Thin Solid Films, 5 (1998)17-21.
[25] A. Smith, J. M. Laurent, D. S. Smith and J. P. Bonnet, Thin Solid Films, 5 (1998) pp. 17-21.
[26] H. Schmidt, G. Rinn, R. Nab,and D. Sporn,Mat. Res. Soc. Symp. Proc. 121(1988) pp. 743-754.









連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔