跳到主要內容

臺灣博碩士論文加值系統

(44.220.62.183) 您好!臺灣時間:2024/03/01 20:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李岩潭
研究生(外文):lee yen tan
論文名稱:影響使用者採用網路即時通訊軟體因素之研究
論文名稱(外文):A Study of the Factors Influencing Users' Adoption of Instant Message System
指導教授:江憲坤江憲坤引用關係
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:資訊管理學系所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:91
中文關鍵詞:自我效能認知成本電腦態度科技接受模式即時通訊軟體
外文關鍵詞:self-efficacyperceived costcomputer attitudetechnology acceptance modelinstant messaging system
相關次數:
  • 被引用被引用:5
  • 點閱點閱:532
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
傳播科技是改變人類社會的主要因素之一,新傳播科技的出現代表一個新時代的來臨,而人類的感官平衡都必須重新調整。本研究目的在於瞭解影響使用者使用網路通訊軟體之因素,而我們以科技接受模式為基礎另外加入了自我效能、認知成本和電腦態度等外部因素,探討認知有用與認知易用的影響因素,盼能得知使用者採用網路通訊即時軟體使用意願的全貌,採取抽樣方法為便利抽樣,調查對象除了彰化縣彰化藝術高中教職員生外還包括了社會人士,透過紙本問卷隨機調查方式,本研究共發出600份問卷,有效回收問卷共499份。本研究嘗試從網路通訊軟體使用者的角度,來探討使用者對網路通訊軟體的認知與態度。因此,本研究的研究目的包括:一、探討使用者的電腦態度、自我效能、認知成本等,對於網路通訊軟體的認知易用性、認知有用性、態度與行為意願的影響。二、探討人口統計變數對於本研究模式的影響與差異。
本研究以LISREL 8.52為統計分析工具,透過結構方程模式分析,實證研究結果如下:
(一)電腦態度對認知易用的影響程度大於自我效能
(二)電腦態度對認知有用的影響程度最高
(三)認知有用對態度的影響程度高於認知易用
(四)態度對使用意圖存在高度的預測效果
(五)認知成本對態度的影響程度高於其對認知易用與認知有用的影響

Communication technology is one of the main factors that change of the human society. The appearance of new communication technology represents the coming of a new era; accordingly the sense balance of human beings has to re-adjust. The purpose of this study is to investigate the factors that affect the adoption of internet Instant Messaging System. The sampling method is Convenience Sampling and the subjects are students, teachers and employees of Changhua Arts Senior High School. This study has delivered 600 questionnaires, 499 of which are the returned effective respondents. From the view of users of internet communication software, this study discusses the attitude of users of internet communication software. Therefore, the purpose of this study includes: 1) investigating the effects of computer attitude, self efficacy and perceived cost on perceived ease of use, perceived usefulness, attitude, and behavior intention. 2) discussing the effects of demographic variables on the research model.
The statistical analysis software is LISREL 8.52. By performing structural equation model, the analytic results include:
1. Computer attitude has larger effects on self-efficacy than perceived ease of use.
2. Computer attitude has the largest effects on perceived usefulness.
3. Perceived usefulness has larger effects on attitude than perceived ease of use.
4. Attitude has highly prediction ability on intention.
5. Perceived cost has largest effects on attitude than that has on perceived usefulness and perceived ease of use.

中文摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VII
第一章 緒論 1
第一節 研究背景 1
第二節 研究動機 4
第三節 研究目的 5
第四節 研究流程 5
第五節 論文架構 7

第二章 文獻探討 8
第一節 即時通訊 8
第二節 網路電話 13
第三節 科技接受模式 17
第四節 電腦態度 31
第五節 自我效能 34
第六節 知覺成本 40


第三章 研究方法 42
第一節 研究架構 42
第二節 研究假設 44
第三節 研究變數定義與衡量 48
第四節 研究設計 52
第五節 資料分析方法 56

第四章 資料分析 60
第一節 樣本資料分析 60
第二節 信度、效度分析 66
第三節 結構方程模式分析 69

第五章 結論與建議 73
第一節 研究結論 73
第二節 研究限制與研究建議 78

參考文獻 79
附錄 89

圖 目 錄
圖1-1 2010年10月亞太地區各國家網友人數比率 2
圖1-2 台灣地區個人上網比率圖 3
圖1-3 研究流程圖 6
圖2-1 即時通訊連線圖 9
圖2-2 通訊型態的發展時程 13
圖2-3 理性行為理論架構圖 20
圖2-4 計劃行為理論架構圖 22
圖2-5 科技接受模式架構圖 24
圖2-6 自我效能模式 36
圖3-1 本研究架構圖 42
圖4-1 模式路徑圖-MSN 71
圖 4-2 模式路徑圖-SKYPE 72
表 目 錄
表2-1 科技接受模式相關研究 26
表2-2 學者對電腦態度之定義 32
表2-3 自我效能定義 34
表3-1 原始TAM構面之衡量項目 49
表3-2 電腦態度構面之衡量項目 50
表 3-3 自我效能構面之衡量項目 51
表3-4 認知成本構面之衡量項目 51
表3-5 前測問卷各構面的Cronbach’s α 值 53
表3-6 本研究潛在變項的共變異矩陣 54
表3-7 模式建議配適值整理 59
表4-1 樣本回收基本資料表 61
表4-2 各問項填答平均值統計1 63
表4-3 各問項填答平均值統計2 64
表4-4 外生變數衡量問項因素負荷、信度指標與AVE值 67
表4-5 內生變數衡量問項因素負荷、信度指標與AVE值 68
表4-6 配適度指標(Goodness of fit)列表 69
表4-7 假設檢定彙整 71
一、中文部份
1.台灣網路資訊中心TWNIC(2011),寬頻網路使用調查,http://www.twnic.net.tw/download/200307/1101a.pdf。
2.程蘊嘉(1994),性別、學科別對大學新生電腦學習態度之影響,私立淡江大學教育資料科學研究所未出版碩士論文。
3.林曉妮(1997),電腦態度與電腦素養的影響因素探討–小學生的實地實驗研究,國立中央大學資訊管理研究所未出版碩士論文。
4.林震城(1997),兩岸大學生電腦態度及電腦素養之比較研究,國立中央大學資訊管理研究所未出版碩士論文。
5.施美朱(2000),國中生電腦學習成就相關因素之研究」,國立臺灣師範大學工業科技教育研究所未出版碩士論文。 
6.謝靜慧(2000),國民中小學教師之電腦焦慮、電腦自我效能、電腦因應策略與電腦素養之相關研究,國立中山大學教育研究所碩士論文。
7.湯惠誠(1994),高雄市高中學生電腦態度及其相關因素之研究,國立高雄師範大學工藝教育研究所未出版碩士論文。
8.吳明隆(1997a),國小學生數學學習行為與其電腦焦慮、電腦態度關係之研究,國立高雄師範大學教育研究所未出版博士論文。
9.吳明隆(1997b),國小學生電腦態度評定量表的探究,科學教育,第六期,頁28-39。
10.吳萬益(2005),企業研究方法,華泰書局,台北。
11.魏延超(1998),教育學程對電腦態度及電腦素養之研究,國立中央大學資訊管理研究所未出版碩士論文。
12.翁百安(1998),環境因素與個人因素對國中生電腦態度與電腦素養之影響,國立中央大學企業管理研究所未出版碩士論文。
13.尤淨纓(2001),網際網路電話選擇行為之研究-模糊積分羅吉特模式之應用,國立交通大學交通運輸研究所碩士論文。
14.李桂銘(2003),基於階層式SIP網路環境的行動網際網路電話系統之設計與實現,國立成功大學工程科學研究所碩士論文。
15.曾柏興(2002),企業購買選擇行為與使用意願之研究-以網路電話閘道器為例,國立成功大學交通管理學系研究所碩士論文。
16.蔡華軒(2003),網路電話之設計與製作,國立中正大學電機工程研究所碩士論文。
17.鄭維仁(2003),漫談VOIP在金融、證券、中大型企業之應用,電腦科技雜誌,第78期。
18.資策會FIND 網站(2007),http://www.find.org.tw/find/home.aspx。
二、英文部分
1.Agarwal, R. and Prasad, J. (1999). Are individual differences germane to the acceptance of new information technologies?, Decision Sciences, 30(2), pp .361-391.
2.Ajzen, I. (1985). From intentions to actions: A theory of planned behavior, In J. Kuhl and J. Beckman (Eds.). Action-control: From cognition to behavior, pp. 11-39.
3.Ajzen, I. and Madden, T. J. (1986). Prediction of goal-directed behavior: Attitudes, intentions, and perceived behavioral control, Journal of Experimental Social Psychology, 22, pp. 453-474.
4.Bagozzi, R. P. and Yi, Y. (1988). On the evaluation of structural equation models, Journal of the Academy of Marketing Science, 16(1), pp. 74-94.
5.Bagozzi, R. P., Davis, F. D. and Warshaw, P. R. (1992). Development and test of a theory of technological learning and usage, Human Relations, 45(7), pp. 659-686.
6.Bandura, A. (1982). Self-efficacy mechanism in human agency, American Psychologist, 37(2), pp. 122-147.
7.Bandura, A. (1986). Social foundations of thought and actions: a social cognitive theory, Englewood Cliffs, Prentice Hall, NJ.
8.Bandura, A. (1991). Social cognitive theory of self-regulation, Organizational Behavior and Human Decision Processes, 50(2), pp.248-287.
9.Benamati, J. S. and Rajkumar, T. M. (2008). An application of TAM to application development outsourcing decisions, Information Resources Management Journal, 21(2), pp. 80-102.
10.Bhattacherjee, A. and Hikmet, N. (2008). Reconceptualizing organizational support and its effect on information technology usage: evidence from the health care sector, The Journal of Computer Information Systems, 48(4), pp. 69-76.
11.Brown, T. S., Brown. J. T. and Baack. S A. (1988). A reexamination the attitudes toward computer usage scale, Educational and Psychological Measurement, 47, pp. 261-269.
12.Browne, M. W. and Cudeck, R. (1993). Testing structural equation models, Newbury Park:Sage.
13.Browne, M. W. and Cudeck, R. (1993). Alternative ways of assessing model fit, in Testing structural equation models, Kenneth B., and Long, J. S. (eds.). Sage, Publications, Newbury Park, CA, pp.136-162
14.Castaneda, J. A., Muñoz-Leiva, F. and Luque, T. (2007). Moderating effects of user experience, Information and Management, 44(4), pp. 384-396.
15.Chau, P. Y. (2001). Influence of computer attitude and self-efficacy on IT usage behavior, Journal of End User Computing, 13(1), pp. 26-33
16.Chen, C. D., Fan, Y. W. and Farn, C. K. (2007). Predicting electronic toll collection service adoption: An integration of the technology acceptance model and the theory of planned behavior, Transportation Research, 15(5), pp. 300-311.
17.Cheng, J. M. S., Sheen, G. J. and Lou G. C. (2006). Consumer acceptance of the internet as a channel of distribution in Taiwan- a channel function perspective, Technovation, 26(7), pp. 856-864.
18.Cheng, T. C. E., Lam, D. Y. C., and Yeung, A. C. L. (2006). Adoption of internet banking: An empirical study in Hong Kong, Decision Support Systems, 42(3), pp. 1558-1572
19.Compeau, D. R. and Higgins, C. A. (1995). Computer Self-Efficacy: Development of a Measure and Initial Test, MIS Quarterly, 19(2), pp. 189-211.
20.Cyr, D., Head, M. and Ivanov, A. (2006). Design aesthetics leading to m-loyalty in mobile commerce, Information and Management, 43(8), pp. 950-963.
21.Davis, F. D. and Venkatesh, V. (1996). A critical assessment of potential measurement biases int the technology acceptance model: the three experiments, International Journal of Human-Computer Studies, 45(1), pp. 19-45.
22.Davis, F. D. (1989a). Perceived usefulness, perceived ease of use, and user acceptance of information technology, MIS Quarterly, 13(3), pp. 319-340.
23.Davis, F. D., R. P. Bagozzi, and Warshaw, P. R. (1989b). User acceptance of computer technology: a comparison of two theoretical models, Management Science, 35(8), pp. 982-1003.
24.Delcourt, M. A. B. and Kinzie, M. B. (1993). Computer technologies in teacher education:the measurement of attitude and self-efficacy, Journal of Research and Development in Education, 27(1), pp. 35-41.
25.Dishaw, M. T., and Strong D. M. (1999). Extending the technology acceptance model with task-technology fit constructs, Information and Management, 36(1), pp. 9-21.
26.Fagan, M. H., Neill, S., Wooldridge, B. R. (2008). Exploring the intention to use computers: an empirical investigation of the role of intrinsic motivation, extrinsic motivation, and perceived ease of use, The Journal of Computer Information Systems, 48(3), pp. 31-37.
27.Fornell, C.(1982). A Second Generation of Multivariate Analysis: Measurement and Evaluation Praeger, New York.
28.Fetscherin, M., Lattemann, C. (2008). User acceptance of virtual worlds, Journal of Electronic Commerce Research, 9(3), pp. 231-242
29.Fishbein, M. and Ajzen, I. (1975). Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research, Addsion-Wesley, MA
30.Gardner, C. and Amoroso D. L. (2004). “Development of an Instrument to Measure the Adoption of Internet Technology by Consumers.” Proceedings of the 37th Hawaii International Conference on System Sciences. Hawaii.
31.Gefen, D. (2000). E-commerce: the role of familiarity and trust, Omega, 28(6), pp. 725-737
32.Gist, M. E. and Mitchell, T. B. (1992). Self-Efficacy: a theoretical analysis of its determinants and malleability, Academy of Management Review, 17(2), pp. 183-211.
33.Guieford, J. P. (1965). Fundamental Statistics in Psychology and Education, New York: McGraw-Hill.
34.Hair, J. F., Anderson, R. E., Tatham, R. L. and Black W. C.(1998). Multivariate Data Analysis, New Jersey: Prentice-Hall
35.Hasan, B. (2006). Delineating the effects of general and system-specific computer self-efficacy beliefs on IS acceptance, Information and Management, 43(5), pp. 565-571.
36.Hasan, B. and Ahmed, M. U. (2007). Effects of interface style on user perceptions and behavioral intention to use computer systems, Computers in Human Behavior, 23(6), pp. 3025-3037.
37.Heinssen, R. K., Glass, C. R. and Knight, L. A.(1987). Assessing computer anxiety: development and validation of the computer anxiety rating scale, Computers in Human Behavior, 3, pp. 49-59.
38.Hignite, M. A. (1990). The relationship between the computer attitudes and computer literacy among prospective business education teachers at Missouri's public four-year colleges and universities, Ph.D. Dissertation, University of Missouri, Columbia.
39.Hill, T., Smith, N. D. and Man, M. F. (1987). Role of efficacy expectations in predicting the decision to use advanced technologies: the case of computers, Journal of Applied Psychology, 72(2), pp. 307-313.
40.Hsu, C. L. and Lu, H. P. (2007). Consumer behavior in online game communities: a motivational factor perspective, Computers in Human Behavior, 23(3), pp. 1642-1659.
41.Hu P. J. H., Clark T. H. K (2003). Examining technology acceptance by school teachers: a longitudinal study, Information and Management, 41, pp. 227-241.
42.Hu, L. and Bentler P. M. (1999). Cutoff criteria for fit indexes in covariance structural equation modeling: Conventional criteria versus new alternatives, Structural Equation Modeling, 6(1), pp. 1-55.
43.Igbaria, M., Guimaraes, T. and Davis, G. B. (1995). Testing the determinants of microcomputer usage via a structural equation model, Journal of Management Information Systems, 11(4), pp. 87-114.
44.Jomes, A. P. and James, L. R. (1979). Psychological climate: Dimensions and relationships of individual and aggregated work environment perception, Organizational Behavior and Human Performance, 23(2), pp. 201–250.
45.Kay, R. H. (1993). An explanation of theoretical and practical foundations for assessing attitudes toward computers: The computer attitude measure (CAM). Computers in Human Behavior, 9, pp. 371-386.
46.Kear, M. (2000). Concept analysis of self-efficacy, Graduate Research in Nursing, 2(2), pp. 142-156.
47.Kelman, H. (1958). Compliance, identification, and internalization: three processes of attitude change, Journal of Conflict Resolution, 1, pp. 51-60.
48.Kettinger, W. J. and Lee, W. J. (1994). Perceived service quality and user satisfaction with the information services function, Decision Sciences, 25( 5/6), pp. 737-766.
49.Kim, H. W., Chan, H. C. and Gupta, S. (2007). Value-based adoption of mobile internet: an empirical investigation, Decision Support Systems, 43(1), pp. 111-126.
50.Lee, S. M., Kim, L., Rhee, S. and Trimi, S. (2006). The role of exogenous factors in technology acceptance: The case of object-oriented technology, Information and Management, 43(4), pp. 469-480.
51.Luarn, P., and Lin, H. H. (2005). Toward an understanding of the behavioral intention to use mobile banking, Computers in Human Behavior, 21(6), pp. 873-891
52.MacCallum, R. C., Rozmowski, M., Mar, C. M., and Reith, J. V. (1994). lternative Strategies for Cross-Validation of Covariance Structure Models, Multivariate Behavioral Research, 29(1), pp. 1-32.
53.McFarland, D. J. and Hamilton, D. (2006). Adding contextual specificity to the technology acceptance model, Computers in Human Behavior, 22(3), pp. 427-447.
54.McLuhan, M. (1964). Understanding Media: The extensions of man. New York: McGraw-Hill.
55.Mellarkod, V., Appan, R., Jones, D. R. and Sherif, K. (2007). A multi-level analysis of factors affecting software developers’ intention to reuse software assets: An empirical investigation, Information and Management, 44(7), pp. 613-625.
56.Moon, J. W. and Kim, Y. G. (2001). Extending the TAM for a world-wide-web context, Information and Management, 38(4), pp. 217-230.
57.Ngai, E. W. T., Poon, J. K. L. and Chan, Y. H. C. (2007). Empirical examination of the adoption of WebCT using TAM, Computers and Education, 48(2), pp. 250-267.
58.Payne, J. W. (1982). Contingent decision behavior, Psychological Bulletin, 92(2), pp. 382-402.
59.Schunk, D. H. (1984). Enhancing self-efficacy and achievement through rewards and goals: motivational and informational effects, Journal of Educational Research, 78(1), pp. 29-34.
60.Scott, J. E. (1994). The measurement of information systems effectiveness:evaluating a measuring instrument, Proceedings of the Fifteenth International Conference on Information System, Vancouver, British Columbia, pp. 111-128.
61.Segars, A. H. and Varun, G. (1993). Re-examining perceived ease of use and usefulness: a confirmatory factor analysis, MIS Quarterly, 17(4), pp.517-525.
62.Seyal, A. H. and Rahman, N. A. (2007). The influence of external variables on the executives' use of the internet, Business Process Management Journal, 13(2), pp. 263-278
63.Seyal, A. H., Rahman, N. A. and Rahim, M. M. (2002). A study of computer attitudes of non-computing students of technical colleges in Brunei Darussalam, Journal of End User Computing, 14(2). pp. 40-47
64.Sheppard, B. H., Hartwick, J. and Warshaw, P. R. (1988). The theory of reasoned action: A meta-analysis of past research with recommendations for modifications and future research, Journal of Consumer Research, 15, pp. 325-343.
65.Srite, M., Thatcher, J. and Galy, E. (2008). Does within-culture variation matter? An empirical study of computer usage, Journal of Global Information Management, 16(1), pp. 1-25.
66.Szajna, B. (1996). Empirical Evaluation of the Revised Technology Acceptance Model, Management Science, 42, pp. 85-92.
67.Tan, M., and Teo, T. S. H. (2000). Factors influencing the adoption of internet banking, Journal of the Association for Information Systems, 1(5), pp. 1-42.
68.Umemuro, H., Shirokane, Y. (2003). Elderly Japanese computer users: assessing changes in usage, attitude, and skill transfer over a one-year period, Universal Access in the Information Society, 2(4), pp. 305-314
69.Uzoka, F. M. E., Abiola, R. O., and Nyangeresi, R. (2008). Influence of product and organizational constructs on ERP acquisition: using an extended technology acceptance model, International Journal of Enterprise Information Systems, 4(2), pp. 67-81.
70.Venkatesh, V., Morris, M. G., Davis, G. B., and Davis, F. D. (2003). User acceptance of information technology: Toward a unified view, MIS Quarterly, 27, pp. 425-478
71.Walczuch, R., Lemmink, J., and Streukens, S. (2007). The effect of service employees' technology readiness on technology acceptance, Information and Management, 44, pp. 206-215
72.Warshaw, P. R. (1980). A new model for predicting behavioral intentions: An alternative to Fishbein, Journal of Marketing Research, 17(2), pp. 153-172.
73.Wheaton, B. (1987). Assessment of fit in over-identified models with latent variables, Sociological Methods and research, 16, pp.118-154.
74.Whitley, B. E. (1996). Gender differences in computer-related attitudes: It depends on what you ask, Computers in Human Behavior, 12(2), pp. 275-289.
75.Yang, S. J., Park, J. and Park, J. (2007). Consumers’ channel choice for university-licensed products: Exploring factors of consumer acceptance with social identification, Journal of Retailing and Consumer Services, 14(3), pp. 165-174.
76.Yi, M. Y., Jackson, J. D., Park, J. S. and Probst, J. C. (2006). Understanding information technology acceptance by individual professionals: Toward an integrative view, Information and Management, 43(3), pp. 350-363.
77.Yoon, C. and Kim, S. (2007). Convenience and TAM in a ubiquitous computing environment: The case of wireless LAN, Electronic Commerce Research and Applications, 6(1), pp. 102-112.
三、英文網頁
1.ComScore Media metrix (2011), http://www.comscore.com/Press_Events/Press_Releases


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊