|
1. F. Kohsaka, and W. Takahashi, Fixed point theorem for a class of nonlinear mappings related to maximal monotone operators in Banach spaces, Arch. Math., 91 (2008), 166-177. 2. L. J. Lin, C. S. Chuang, and Z. T. Yu, Fixed points theorems for some new nonlinear mappings in Hilbert spaces, submitted. 3. W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510. 4. A. Genel, and J. Lindenstrass, An example concerning xed points, Israel. J. Math., 22 (1975), 81-86. 5. A. Tada, and W. Takahashi,Weak and strong convergence theorems for a non-expansive mappings and an equilibrium problem, J. Optim. Theory Appl., 133 (2007), 359-370. 6. P. Kumam, A hybrid approximation method for equilibrium and xed point problems for a monotone mapping and a nonexpansive mapping, Nonlinear Anal., 2 (2008), 1245-1255. 7. W. Takahashi, Y. Takeuchi, and R. Kubota, Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 341 (2008), 276-286. 8. X. L. Qin, L. J. Lin, and S. M. Kang, On a generalized Ky Fan inequality and asymptotically strict pseudocontractions in the intermediate sense, J. Optim. Theory Appl., doi:10.1007/s10957-011-9853-z. 9. W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohoma Publishers, Yokohoma, 2009. 10. S. Itoh, and W. Takahashi, The common xed point theory of single-valued mappings and multi-valued mappings, Pacic J. Math., 79 (1978), 493-508. 11. W. Takahashi, and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., 118 (2003), 417-428. 12. W. Takahashi, Nonlinear Functional Analysis-Fixed Point theory and its Ap-plications, Yokohama Publishers, Yokohama, 2000. 13. E. Blum, and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), 123-145. 14. P. L. Combettes, and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., 6 (2005), 117-136. 15. K. Goebel, and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990.
|