|
[1] M. F. Chen, et al., Laser micro drilling with different methods for silicon wafer substrate, The Eighth Asia-Pacific Conference on Materials Processing (8th APCMP, 2008). [2] J. C. Ion, Laser Processing of Engineering Materials, Elsevier Academic Press (2005). [3] http://www.geniray.com/c/product04.htm [4] http://www.A-optowave.com [5] V. V. Avilov, et al., Mhd melt control systems for high-power beam welding of metals, the 15th riga and 6th pamirconference on fundamental and applied mhd – Electromagnetic processing of materials. [6] C. Karatas, et al., Laser cutting of steel sheets: Influence of workpiece thickness and beam waist position on kerf size and stria formation, J Mater Process Technol, 172 (2006) 22-29. [7] D. Guo, et al., Spatter-free laser drilling of alumina ceramics based on gel casting technology, J Euro Ceramic Soc, 23 (2003) 1263-1267. [8] M. Park, et al., Ultrafast laser ablation of indium tin oxide thin films for organic light-emitting diode application, Opt Lasers Eng, 44, (2006) 138-146. [9] A. Schoonderbeek, et al., Novel industrial approaches in solar-cell production, SPIE (2008). [10] M. H. Yang, Transparent conductive films, Yi-Xuan publication Inc (2000). [11] P. K. Biswas, et al., Work function of sol–gel indium tin oxide (ITO) films on glass, Appl Surf Sci, 253, 4 (2006) 1953-1959. [12] R. G. Gordon, Criteria for choosing transparent conductors, MRS publication (2000). [13] M. H. Weng, Green Optical-electronic materials technology and industry trends, publication Inc (2000). [14] Y. Wang, et al., Annealing effects of sapphire substrate on properties of ZnO films grown by magnetron sputtering, Appl Phys A: Mater Sci Process, 88 (2007) 727-729. [15] X. Tao, et al., CO2 laser-induced crystallization of sol–gel-derived indium tin oxide films, Appl Phys A: Mater Sci Process, 96 (2009) 741-749. [16] H. Shin, et al., Laser-driven high-resolution patterning of indium tin oxide thin film for electronic device, Opt Laser Eng, 48 (2010) 816-820. [17] M. R. Taghizadeh, et al., Design and fabrication of diffractive elements for laser material processing applications, Opt Laser Eng, 34 (2000) 289-307. [18] S. J. Lee, et al., Design and fabrication of a micro fuel cell array with “flip-flop” interconnection, J Power Sources, 112 (2002) 410-418. [19] F. Brygo, et al., Laser fluence, repetition rate and pulse duration effects on paint ablation, Appl Surf Sci, 252 (2006) 2131-2138. [20] C. W. White, et al., Laser annealing of ion-implanted semiconductors, Science, 204 (1979) 461-468. [21] S. Y. Lee, et al., Fabrication of ZnO thin film diode using laser annealing, Thin Solid Films, 473 (2005) 31-34. [22] I. Ozerov, et al., Enhancement of exciton emission from ZnO nanocrystalline films by pulsed laser annealing, Appl Surf Sci, 226 (2004) 242-248. [23] H. P. Herzig, Micro-optics: elements, systems and applications, CRC Press (1997) 224. [24] J. Cordingley, Application of a binary diffractive optic for beam shaping in semiconductor processing by lasers, Opt Soc Am, 32, 14 (1993) 2538-2542. [25] S. Corbett, et al., Laser direct exposure of photodefinable polymer masks using shaped-beam optics, IEEE Transactions of Electronics Packaging Manufacturing, 28, 4 (2005) 312-321. [26] D. Schäfer et al., Diffractive beam shaping for partially coherent UV-laser beam, Opt Soc Am (2002). [27] D. L. Shealy, Optical design of laser beam shaping systems, Opt Soc Am (2002). [28] J. S. Liu, et al., Iterative algorithm for the design of diffractive phase elements for laser beam shaping, Opt Soc Am, 27, 16 (2002). [29] http://en.wikipedia.org/wiki/Scanning_electron_microscope [30] http://120.107.167.110/viewp.php [31] http://www.surfaceng.com/serv_testing.html [32] http://pvcdrom.pveducation.org/CHARACT/4pp.HTM [33] http://en.wikipedia.org/wiki/Spectrophotometer [34] http://en.wikipedia.org/wiki/Atomic_force_microscope [35] http://www.ntmdt.com/device/solver-p47-pro [36] http://www.Laserfocusworld.com [37] http://en.wikipedia.org/wiki/Full_width_at_half_maximum [38] H. Weichel, Laser beam propagation in the atmosphere, SPIE (1990). [39] F. M. Dickey, et al., Laser beam shaping: theory and techniques, CRC Press (2005). [40] http://www.globalspec.com/reference/34377/160210/Chapter-4-5-1-Scanner-Devices-and-Techniques-The-Galvanometric-Scanner. [41] H. Hügel, et al., Strahlwerkzeug Laser, Stuttgart (1992). [42] M. I. Mishchenko, et al., Scattering, absorption, and emission of light by small particles, Cambridge University Press (2002). [43] S. O. Kasap, Optoelectronics and photonics: principles and practices, Prentice Hall (2002). [44] http://en.wikipedia.org/wiki/Transverse_mode [45] P. Hoffmann, Micro-usinage Laser, STI, Microtechnique (2011). [46] E. Kannatey-Asibu, et al., Principles of Laser Materials Processing, John Wiley and Sons (2009). [47] J. C. Ion, Laser processing of engineering materials: principles, procedure and industrial application, Elsevier (2005). [48] http://www.cmxr.com/ [49] S. Venkat, Laser patterning of ITO in flat panel display manufacturing, Proc SPIE (2006) 610602- 610607. [50] O. Yavas, et al., Effect of substrate absorption on the efficiency of laser patterning of indium tin oxide thin films, J App Phys 85 8 (1999) 4207-4212. [51] O. Yavas, et al., High-speed maskless laser patterning of thin films for giant microelectronics, Microprocesses and Nanotechnology Conference (1999) 172-173. [52] M. J. Hamedi, et al., Effect of pulsed laser parameters on in-situ TiC synthesis in laser surface treatment, Opt Laser Eng, 49 (2011) 557-563. [53] M. F. Chen, et al., Laser patterning with beam shaping on indium tin oxide thin films of glass/plastic substrate, Thin Solid Films, 518 (2009) 1072-1078. [54] J. L. Deng, Control problems of grey system, Syst Control Lett, 5 (1982) 288-294. [55] J. L. Deng, Introduction to grey system theory, J Grey Syst, 1 1 (1989) 1-24. [56] M. F. Chen, et al., Laser direct write patterning technique of indium tin oxide film, Thin Solid Films, 515 (2007) 8515-8518. [57] U. Çaydas, et al., Use of the grey relational analysis to determine optimum laser cutting parameters with multi-performance characteristics, Opt Laser Technol, 40 (2008) 987-994. [58] M. F. Chen, et al., Optimized laser cutting on light guide plates using grey relational analysis, Opt Laser Eng, 49 (2011) 222-228. [59] C. H. Wu, On the application of grey relational analysis and RIDIT analysis to likert scale surveys, Int Math Forum (2007) 675–687. [60] X. Tan, et al., Applications of gray relational analysis in gastroenterology, World J Gastroenterology, 11 (2005) 3457-3460. [61] C. L. Chang, et al., Applying grey relational analysis to the decathlon evaluation model, Int J Comput Internet Manage, 11 (2003) 54–62. [62] A. K. Dubey, et al., Multi-objective optimization of Nd:YAG laser cutting of nickel-based superalloy sheet using orthogonal array with principal component analysis, Opt Laser Eng, 46 (2008) 124-132. [63] Z. H. Li, et al., A new laser direct etching method of indium tin oxide electrode for application to alternative current plasma display panel, Appl Surf Sci, 255 24 (2009) 9843. [64] M. A. Green, et al., Crystalline silicon on glass (CSG) thin-film solar cell modules, Sol Energy, 77 6 (2004) 857. [65] J. Lee, et al., Heat treatment effects on electrical and optical properties of ternary compound In2O3–ZnO films, J Appl Phys, 92 (2002) 5761. [66] T. Miyata, et al., High sensitivity chlorine gas sensor using multi-component transparent conducting oxide thin film, Sens Actuators B Chem, 69 (2000) 16. [67] T. N. Murakami, et al., Counter electrodes for DSC: Application of functional materials as catalysts, Inorganica Chim Acta, 361 (2008) 572. [68] Y. He, et al., High-efficiency organic polymer light-emitting heterostructure devices on flexible plastic substrates, Appl Phys Lett, 76 (2000) 661. [69] M. Ikegami, et al., A platinum/titanium bimetallic layer deposited on polymer film as efficient counter electrodes for plastic dye-sensitized solar cells, Appl Phys Lett, 90 (2007) 153122. [70] Y. Lin, et al., A study on the wet etching behavior of AZO (ZnO:Al) transparent conducting film, Appl Surf Sci, 254 (2008) 2671. [71] P. Nunes, et al., Effect of different dopant elements on the properties of ZnO thin films, Vac 64 (2002) 281. [72] N. R. Franklin, et al., Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems, Appl Phys Lett, 81 (2002) 913. [73] F. C. Voogt, et al., A combined tem and time-resolved optical reflectivity investigation into the excimer-laser crystallization of a-si films, Thin Solid Films, 383 (2001) 45. [74] R. A. Lawes, et al., The formation of moulds for 3D microstructures using excimer laser ablation, Microsyst Technol, 3 (1996) 17. [75] Y. Takamura, et al., Thermal stability of laser annealed dopants in silicon, J Appl Phys, 92 (2002) 230. [76] M. F. Chen, et al., Examination of the developed scanning system for rgb laser projector with a feedback control, Opt Rev, 18 (2011) 128-131. [77] J. A. Hoffnagle, et al., Beam shaping with a plano-aspheric lens pair, Opt Eng, 42 (2003) 3090. [78] Y. C. Tung, Preparation and characterization of Al-and Ga-doped transparent conductive zinc oxide thin films, STUT (2011). [79] R. Hezel, High-Efficient Low-Cost Photovoltaics, Springer (2009). [80] H. Chen, et al., Fabrication of sub-wavelength antireflective structures in solar cells by utilizing modified illumination and defocus techniques in optical lithography, Microelec Eng, 84 (2007) 750-754. [81] N. D. Fatti, et al., Temperature-dependent electron-lattice thermalization in GaAs, Phys Rev B, 59 (1999) 4576. [82] M. A. Green, Solar cells, The University of New South Wales (1992). [83] S. D. Zilio, et al., Fabrication of a light trapping system for organic solar cells, Microelec Eng, 86 (2009) 1150-1154. [84] J. Zhao, et al., 19.8% efficient "honeycomb" textured multicrystalline and 24.4% monocrystalline silicon solar cells, Appl Phys Lett 73 (1998) 1991. [85] J. Guo, et al., Laser-grooved backside contact solar cells with 680-mv open-circuit voltage, IEEE Trans Electron Devices, 51 (2004) 2186-2192. [86] L. Sun, et al., A new texturing technique of monocrystalline silicon surface with sodium hypochlorite, Appl Surf Sci, 255 (2009) 9301-9304. [87] U. Zastrow, et al., Characterization of laser-fired contacts in PERC solar cells: SIMS and TEM analysis applying advanced preparation techniques, Appl Surf Sci, 252 (2006) 7082-7085. [88] J. Arumughan, et al., Simplified edge isolation of buried contact solar cells, Solar Energy Mater Solar Cells, 87 (2005) 705-714. [89] W. Li, et al., Focused-ion-beam direct structuring of fused silica for fabrication of nano-imprinting templates, Microelec Eng, 84 (2006) 829-832. [90] G. Claudio, et al., Surface passivation by silicon nitride in laser grooved buried contact (LGBC) silicon solar cells, Superlattices and Microstructures, 45 (2008) 234-239. [91] W. Liu, Introduction of CIGS device, PMC (2008).
|