(3.237.97.64) 您好!臺灣時間:2021/03/05 03:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:何友森
研究生(外文):Yu-Sen, Ho
論文名稱:雷射技術應用於光電材料:成型、改質與基板熱效應
論文名稱(外文):Applications of Laser Technology for Patterning, Modifying, and Thermal Effects on Substrates of Optoelectronic Materials
指導教授:陳明飛陳明飛引用關係
指導教授(外文):Ming-Fei, Chen
學位類別:博士
校院名稱:國立彰化師範大學
系所名稱:機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:133
中文關鍵詞:氧化銦錫摻氟氧化錫雷射光束成型雷射電極成型雷射退火灰關聯分析法點陣式掃瞄向量式掃瞄薄膜太陽能電池
外文關鍵詞:ITOFTOlaser beam shapinglaser patterninglaser annealinggrey relational analysisdot-scanningvector-scanningthin film solar cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:434
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是針對雷射與透明基板上的透明導電薄膜材料之間的交互關系進行研究,並採用1064奈米波長的Nd:YAG雷射加工系統作為實驗載具。利用不同的的雷射加工參數-雷射功率、雷射重覆頻率、作用時間及聚焦位置-對透明基板上的透明導電薄膜材料進行電極成型。選擇一組適當的雷射加工參數達成一個高加工品質是重要的。灰關聯分析法是一種能快速分析並找出最佳化加工參數的方法,利用灰關聯分析法對電極成型中的兩項特性-片電阻與光穿透性-進行分析,藉此找出雷射電極成型後其最佳的加工參數。對氧化銦錫玻璃基板而言,其最佳雷射電極成型參數為:4瓦的雷射功率、30仟赫茲的雷射重覆頻率、600微秒的雷射作用時間及雷射聚焦於基板下1釐米;對氧化銦錫塑膠基板而言,其最佳雷射成型參數為:1.7瓦的雷射功率、20仟赫茲的雷射重覆頻率、300微秒的雷射作用時間及雷射聚焦於基板下1釐米。
雷射退火製程部份,討論了點陣式掃瞄與向量式掃瞄方式下,雷射對透明導電薄膜材料的影響;若雷射光束整型運用在雷射退火製程,其雷射能量分佈若為對稱的將會比非對稱的,可在透明導電薄膜材料上得到更好的表面粗糙度。透明導電薄膜材料的電阻值與載子的遷移率也可以被改善。在氧化銦錫玻璃基板的雷射退火製程中,原始氧化銦錫膜的片電阻值與表面粗糙度值分別為417 Ω/sq and 23奈米,退火後其氧化銦錫膜的片電阻值與表面粗糙度值分別下降到400.4 Ω/sq and 4.2奈米。並在退火過中使用一個便宜的光罩代替光束整型鏡組來達成雷射整型的目的。在摻氟氧化錫玻璃基板的雷射退火製程中,原始摻氟氧化錫膜的片電阻值與載子遷移率分別為151.6 Ω/sq 及 7.914 cm2/Vs,退火後其摻氟氧化錫膜的片電阻值與載子遷移率分別為127.5 Ω/sq 及 9.204 cm2/Vs。氧化銦錫膜與摻氟氧化錫膜皆可成功利用雷射退火技術來達成退火效果。另外,也以雷射成型與雷射退火技術應用於可撓不鏽鋼CIGS太陽能電池的製程上。
在此論文中,透明導電薄膜材料的特性是利用掃描式電子顯微鏡、X光繞射儀、四點探針儀、霍爾量測儀、光譜儀及原子力顯微鏡等量測儀器。

This thesis focuses on laser beam interaction with transparent conductive oxide (TCO) films on transparent substrates and a fundamental Nd: YAG laser processing system with 1064 nm wavelength. The laser processing system was applied to carve the electrode patterns of TCO films on transparent substrates according to the related process parameters, such as laser power, laser repetition rate, laser focusing position, and duration. In order to achieve high quality electrode patterns, the method for selecting a suitable set of parameters, by using laser direct writing technology, is important.
Grey relational analysis is one of the forecasting analysis methods which can rapidly identify the optimum patterning parameters. Using the grey relational analysis optimizes the electrode patterns of laser process, including the sheet resistance and transmittance of the ITO/glass and ITO/PC substrates analysis to optimize performance characteristics. By analyzing the relation of the four factors, a set of optimal direct laser patterning parameters for ITO/glass and ITO/PC were obtained successfully. For the ITO/glass, the optimum machining parameters are: laser average power of 4 watt, laser repetition rate of 30 kHz, laser duration time of 600 , and laser focus at 1 mm below the substrate. For the ITO/PC, the optimum machining parameters are laser average power of 1.7 watt, laser repetition rate of 20 kHz, laser duration time of 300 , and laser focus at 1 mm below the substrate.
For laser patterning on TCO films, the dot-scanning and vector-scanning methods in laser annealing on TCO films were discussed. Using beam shaping technology with symmetric intensity distribution enabled us to obtain a better surface roughness than using beam shaping technology with asymmetric intensity distribution. The electrical resistivity and carrier mobility of the TCO films could be improved by laser annealing treatment. The sheet resistance and surface roughness of as-deposited ITO films were 417 Ω/sq and 23 nm by laser annealing treatment with beam shaping with an inexpensive aperture instead of a beam shaper. After the laser annealing process, they were reduced to 400.4 Ω/sq and 4.2 nm. The sheet resistance and carrier mobility of as-deposited FTO films were 151.6 Ω/sq and 7.914 cm2/Vs, respectively. After the laser annealing process, they were reduced to 127.5 Ω/sq and 9.204 cm2/Vs, respectively. The electrical resistivity and carrier mobility of the TCO films can be improved by laser annealing treatment. Additionally, the flexible CIGS solar cells on the stainless steel substrate are also applied by using the laser technology with grey relational analysis and laser annealing technology.
Some instruments are utilized in this paper, including the scanning electron microscope (SEM), x-ray diffraction (XRD), four-point probe, Hall-effect measurement, spectrophotometer, and atomic force microscopy (AFM).

Contents I
Abstract III
Abstract (in Chinese) V
Acknowledgement VI
Table captions VII
Figure captions IX

Chapter 1 Introduction 1
1.1 Backgrounds 1
1.2 Literature review 7
1.2.1 Transparent conductive oxide films 7
1.2.2 Laser annealing technology of transparent conductive oxide films coated on the substrates 10
1.2.3 Laser patterning technology and beam shaping technology 13
1.3 Measurement 17
1.4 Structure of the dissertation 21

Chapter 2 Theory of laser beam interaction with transparent conduct oxide thin films 22
2.1 Introduction to the laser micromachining process 22
2.2 Introduction to the laser machining machine 23
2.3 Optical delivery system of the laser processing machine 27
2.3.1 Beam expander or collimator components 27
2.3.2 Beam shaper components 28
2.3.3 Aperture components 30
2.3.4 Galvanometric scanners 31
2.3.5 Focusing lens 33
2.4 Related parameters of the laser micromachining processing system 37
2.4.1 Laser power and energy 37
2.4.2 Laser intensity distribution 38
2.4.3 Material absorption 39
2.4.4 Laser mode 41
2.4.5 Laser beam diameter 42
2.4.6 Laser spot overlapping 43
2.5 Mechanism of laser beam interaction with material 44
2.5.1 Principal effects of laser-induced damage 45
2.5.2 Plasma 46
2.5.3 Long-pulsed laser matter interaction 47

Chapter 3 Laser patterning on transparent conductive oxide thin films 48
3.1 Introduction 48
3.2 Experiments 49
3.2.1 The Nd: YAG laser patterning system 50
3.2.2 Machining performance of the laser patterning process 50
3.3 Grey relational analysis of experimental results 51
3.3.1 Grey relational analysis 52
3.3.2 Normalized experimental results of each performance characteristic 58
3.4 Results and discussion 60
3.5 Conclusions 68

Chapter 4 Laser annealing on transparent conductive oxide thin films 69
4.1 Introduction 69
4.2 Experiments 71
4.2.1 Case I:Laser annealing on ITO films 71
4.2.2 Case II:Laser annealing on FTO films 74
4.2.3 Case Ⅲ:Laser annealing on GZO films 75
4.3 Results and discussion 76
4.3.1 Case I:Laser annealing on ITO films 76
4.3.2 Case II:Laser annealing on FTO films 85
4.3.3 Case Ⅲ:Laser annealing on GZO films 91
4.4 Conclusions 97

Chapter 5 CIGS solar cell on the stainless steel substrate by laser patterning and annealing process 99
5.1 Introduction 99
5.2 Experiments 102
5.2.1 Laser patterning process on the P1 layer of CIGS 103
5.2.2 Laser annealing process on AZO films of CIGS 104
5.3 Results and discussions 105
5.3.1 Laser patterning process on the P1 layer of CIGS 105
5.3.2 Laser annealing process on AZO films of CIGS 114
5.4 Conclusions 117

Chapter 6 Conclusions and Future work 119
6.1 Conclusions 119
6.2 Future work 121
References 122
Vita and Publications 127

Table captions
Table 1.1 TCO used in products 7
Table 1.2  / for some transparent conductors 9
Table 1.3 Optimal TCO property 10
Table 2.1 Specifications of Nd:YAG laser micromachining system 23
Table 2.2 Nd:YAG laser parameters 38
Table 3.1 (a) Electronic properties and morphology of the ITO/glass 50
Table 3.1 (b) Electronic properties and morphology of the ITO/PC 50
Table 3.2 (a) Factor and levels of laser patterning ITO/glass 55
Table 3.2 (b) Factor and levels of laser patterning ITO/PC 55
Table 3.3 Experimental layout of L9 (34) orthogonal array 56
Table 3.4 (a) Experimental results of sheet resistance and the transparency of ITO/glass 57
Table 3.4 (b) Experimental results of sheet resistance and the transparency of ITO/PC 58
Table 3.5 (a) Normalized experimental results for ITO/glass 59
Table 3.5 (b) Normalized experimental results for and ITO/PC 60
Table 3.6 (a) Deviation sequences of ITO/glass 61
Table 3.6 (b) Deviation sequences of ITO/PC 62
Table 3.7 (a) Grey relational coefficient and grey relational grade of ITO/glass 63
Table 3.7 (b) Grey relational coefficient and grey relational grade of ITO/PC 64
Table 3.8 (a) Response table for the grey relational grade of ITO/glass 65
Table 3.8 (b) Response table for the grey relational grade of ITO/PC 66
Table 4.1 Electronic properties and morphology of the ITO/glass 72
Table 4.2 Characteristics of the FTO/glass 74
Table 4.3 Characteristics of the GZO/glass 76
Table 4.4 Sheet resistance depending on laser annealing with the different methods 79
Table 4.5 Comparison of surface roughness using beam shaping technology 83
Table 5.1 Electronic properties and morphology of the Mo thin films 103
Table 5.2 Factor and levels of laser patterning on Mo/stainless steel substrate 109
Table 5.3 Line width and depth of Mo/stainless steel using laser patterning process 109
Table 5.4 Normalized results for Mo/stainless steel using laser patterning process 110
Table 5.5 Deviation sequences of Mo/stainless steel using laser patterning process 111
Table 5.6 Grey relational coefficient and grade of Mo/stainless steel using laser patterning
process 111
Table 5.7 Response table for the grey relational grade of Mo/stainless steel using laser
patterning process 112
Table 5.8 Surface roughness with the different average laser power 116
Table 5.9 Surface roughness with the different laser duration 117

Figure captions
Fig. 1.1. The applications of laser micromachining 4
Fig. 1.2. The applications of laser process 6
Fig. 1.3. Schematic diagram of the development and future of TCO materials 9
Fig. 1.4. TEM images of comparing laser and thermally annealed silicon 12
Fig. 1.5. Current–voltage characteristics for a ZnO diode formed by laser annealing 13
Fig. 1.6. AFM image of ZnO film: (a) as-deposited; (b) annealed at laser fluence 13
Fig. 1.7. Schematic diagram of the SEM image of laser ablation 15
Fig. 1.8. Schematic diagram of beam shaping by three diffractive phase elements 16
Fig. 1.9. Schematic diagram of beam intensity distribution using iterations 17
Fig. 1.10. Scanning electron microscope 18
Fig. 1.11. X-ray diffraction 18
Fig. 1.12. Four-point probe 19
Fig. 1.13. Hall instrument 19
Fig. 1.14. Spectrophotometer 20
Fig. 1.15. Atomic force microscopy 20
Fig. 2.1. Schematic diagram of lasers by applications 22
Fig. 2.2. Schematic diagram of a optical delivery system of a Nd: YAG laser machine 24
Fig. 2.3. The construction of the fundamental Nd: YAG laser machine 25
Fig. 2.4. Schematic of Nd:YAG laser micromachining system 26
Fig. 2.5. Schematic of full width at half maximum versus time 27
Fig. 2.6. Schematic of laser beam propagation of Galilean beam expander 28
Fig. 2.7. Schematic of laser beam propagation of π-shaper 29
Fig. 2.8. Schematic of outline of beam-shaping technologies 30
Fig. 2.9. Schematic of laser beam shaping using a aperture stop 31
Fig. 2.10. Schematic of two-axis galvanometric scanning module 32
Fig. 2.11. Schematic diagram of laser scanning method 33
Fig. 2.12. Schematic of simple achromatic focusing lens 34
Fig. 2.13. Schematic of flat-field focusing lens 35
Fig. 2.14. Schematic of F-Theta focusing lens 36
Fig. 2.15. Schematic of telecentric F-theta focusing lens 36
Fig. 2.16. Schematic of various laser wavelengths vs. absorption rate 40
Fig. 2.17. Schematic of attenuation of light in the direction of propagation 41
Fig. 2.18. Schematic of common TEM laser beam modes 42
Fig. 2.19. Schematic of focal point and focal length of a lens 43
Fig. 2.20. Schematic of laser spot overlapping 44
Fig. 2.21. Schematic of laser beam irradiation of various materials 45
Fig. 2.22. Schematic of various interaction effects of laser beam with specimen 46
Fig. 2.23. Schematic diagram of avalanche ionization process 47
Fig. 3.1. Schematic diagram of electrode pattern by laser process 51
Fig. 3.2. Flowchart of electrode patterns on ITO films via grey relational analysis 52
Fig. 3.3. SEM image of ITO/glass using laser patterning with optimal cutting parameters 67
Fig. 3.4. SEM image of ITO/PC using laser patterning with optimal cutting parameters 68
Fig. 4.1. Schematic diagram of laser annealing system of Nd:YAG laser 73
Fig. 4.2. Comparison of the various beam profile using laser beam shaping technology 77
Fig. 4.3. Comparison of sheet resistance between the different laser overlap 80
Fig. 4.4. AFM images of surface of ITO/glass substrate 82
Fig. 4.5. Surface roughness using laser beam shaping with the different beam profile 84
Fig. 4.6. Mobility of ITO/glass depending on the different average laser power 85
Fig. 4.7. Hall data on different annealing laser power by annealed treatment 86
Fig. 4.8. XRD patterns of FTO film 86
Fig. 4.9. Crystallite size of FTO film depending on laser power 87
Fig. 4.10. Schematic diagram of FTO film depending on the different laser power 90
Fig. 4.11. XRD patterns of GZO film 91
Fig. 4.12. Crystallite size of GZO film depending on laser power 92
Fig. 4.13. SEM images of GZO film by laser annealing treatment with the different power 94
Fig. 4.14. Hall data on different annealing laser power by annealed treatment 95
Fig. 4.15. Transparence of the unannealed GZO film on the glass 96
Fig. 4.16. Transparence of the GZO film on the glass by annealed treatment 96
Fig. 5.1. Schematic diagram of CIGS solar cell device 101
Fig. 5.2. Schematic diagram of a P1 layer on the stainless steel substrate 104
Fig. 5.3. Schematic diagram of the structure of CIGS solar cell 105
Fig. 5.4. Flowchart of the temperature distribution prediction procedure 106
Fig. 5.5. Temperature distributions during laser ablation on Mo/stainless steel 107
Fig. 5.6. 3D and cross-section image of the electrode trench 108
Fig. 5.7. SEM and EDS images of the as-deposited Mo films 113
Fig. 5.8. SEM and EDS images of the Mo/stainless steel using laser patterning process 113
Fig. 5.9. 3D and cross-section image of the Mo/stainless steel 113
Fig. 5.10. Sheet resistance of AZO film by laser annealing process with the different laser
power 114
Fig. 5.11. AFM images of surface of AZO film 115
Fig. 5.12. Sheet resistance of AZO film by laser annealing process with the different laser duration 117
[1] M. F. Chen, et al., Laser micro drilling with different methods for silicon wafer substrate, The Eighth Asia-Pacific Conference on Materials Processing (8th APCMP, 2008).
[2] J. C. Ion, Laser Processing of Engineering Materials, Elsevier Academic Press (2005).
[3] http://www.geniray.com/c/product04.htm
[4] http://www.A-optowave.com
[5] V. V. Avilov, et al., Mhd melt control systems for high-power beam welding of metals, the 15th riga and 6th pamirconference on fundamental and applied mhd – Electromagnetic processing of materials.
[6] C. Karatas, et al., Laser cutting of steel sheets: Influence of workpiece thickness and beam waist position on kerf size and stria formation, J Mater Process Technol, 172 (2006) 22-29.
[7] D. Guo, et al., Spatter-free laser drilling of alumina ceramics based on gel casting technology, J Euro Ceramic Soc, 23 (2003) 1263-1267.
[8] M. Park, et al., Ultrafast laser ablation of indium tin oxide thin films for organic light-emitting diode application, Opt Lasers Eng, 44, (2006) 138-146.
[9] A. Schoonderbeek, et al., Novel industrial approaches in solar-cell production, SPIE (2008).
[10] M. H. Yang, Transparent conductive films, Yi-Xuan publication Inc (2000).
[11] P. K. Biswas, et al., Work function of sol–gel indium tin oxide (ITO) films on glass, Appl Surf Sci, 253, 4 (2006) 1953-1959.
[12] R. G. Gordon, Criteria for choosing transparent conductors, MRS publication (2000).
[13] M. H. Weng, Green Optical-electronic materials technology and industry trends, publication Inc (2000).
[14] Y. Wang, et al., Annealing effects of sapphire substrate on properties of ZnO films grown by magnetron sputtering, Appl Phys A: Mater Sci Process, 88 (2007) 727-729.
[15] X. Tao, et al., CO2 laser-induced crystallization of sol–gel-derived indium tin oxide films, Appl Phys A: Mater Sci Process, 96 (2009) 741-749.
[16] H. Shin, et al., Laser-driven high-resolution patterning of indium tin oxide thin film for electronic device, Opt Laser Eng, 48 (2010) 816-820.
[17] M. R. Taghizadeh, et al., Design and fabrication of diffractive elements for laser material processing applications, Opt Laser Eng, 34 (2000) 289-307.
[18] S. J. Lee, et al., Design and fabrication of a micro fuel cell array with “flip-flop” interconnection, J Power Sources, 112 (2002) 410-418.
[19] F. Brygo, et al., Laser fluence, repetition rate and pulse duration effects on paint ablation, Appl Surf Sci, 252 (2006) 2131-2138.
[20] C. W. White, et al., Laser annealing of ion-implanted semiconductors, Science, 204 (1979) 461-468.
[21] S. Y. Lee, et al., Fabrication of ZnO thin film diode using laser annealing, Thin Solid Films, 473 (2005) 31-34.
[22] I. Ozerov, et al., Enhancement of exciton emission from ZnO nanocrystalline films by pulsed laser annealing, Appl Surf Sci, 226 (2004) 242-248.
[23] H. P. Herzig, Micro-optics: elements, systems and applications, CRC Press (1997) 224.
[24] J. Cordingley, Application of a binary diffractive optic for beam shaping in semiconductor processing by lasers, Opt Soc Am, 32, 14 (1993) 2538-2542.
[25] S. Corbett, et al., Laser direct exposure of photodefinable polymer masks using shaped-beam optics, IEEE Transactions of Electronics Packaging Manufacturing, 28, 4 (2005) 312-321.
[26] D. Schäfer et al., Diffractive beam shaping for partially coherent UV-laser beam, Opt Soc Am (2002).
[27] D. L. Shealy, Optical design of laser beam shaping systems, Opt Soc Am (2002).
[28] J. S. Liu, et al., Iterative algorithm for the design of diffractive phase elements for laser beam shaping, Opt Soc Am, 27, 16 (2002).
[29] http://en.wikipedia.org/wiki/Scanning_electron_microscope
[30] http://120.107.167.110/viewp.php
[31] http://www.surfaceng.com/serv_testing.html
[32] http://pvcdrom.pveducation.org/CHARACT/4pp.HTM
[33] http://en.wikipedia.org/wiki/Spectrophotometer
[34] http://en.wikipedia.org/wiki/Atomic_force_microscope
[35] http://www.ntmdt.com/device/solver-p47-pro
[36] http://www.Laserfocusworld.com
[37] http://en.wikipedia.org/wiki/Full_width_at_half_maximum
[38] H. Weichel, Laser beam propagation in the atmosphere, SPIE (1990).
[39] F. M. Dickey, et al., Laser beam shaping: theory and techniques, CRC Press (2005).
[40] http://www.globalspec.com/reference/34377/160210/Chapter-4-5-1-Scanner-Devices-and-Techniques-The-Galvanometric-Scanner.
[41] H. Hügel, et al., Strahlwerkzeug Laser, Stuttgart (1992).
[42] M. I. Mishchenko, et al., Scattering, absorption, and emission of light by small particles, Cambridge University Press (2002).
[43] S. O. Kasap, Optoelectronics and photonics: principles and practices, Prentice Hall (2002).
[44] http://en.wikipedia.org/wiki/Transverse_mode
[45] P. Hoffmann, Micro-usinage Laser, STI, Microtechnique (2011).
[46] E. Kannatey-Asibu, et al., Principles of Laser Materials Processing, John Wiley and Sons (2009).
[47] J. C. Ion, Laser processing of engineering materials: principles, procedure and industrial application, Elsevier (2005).
[48] http://www.cmxr.com/
[49] S. Venkat, Laser patterning of ITO in flat panel display manufacturing, Proc SPIE (2006) 610602- 610607.
[50] O. Yavas, et al., Effect of substrate absorption on the efficiency of laser patterning of indium tin oxide thin films, J App Phys 85 8 (1999) 4207-4212.
[51] O. Yavas, et al., High-speed maskless laser patterning of thin films for giant microelectronics, Microprocesses and Nanotechnology Conference (1999) 172-173.
[52] M. J. Hamedi, et al., Effect of pulsed laser parameters on in-situ TiC synthesis in laser surface treatment, Opt Laser Eng, 49 (2011) 557-563.
[53] M. F. Chen, et al., Laser patterning with beam shaping on indium tin oxide thin films of glass/plastic substrate, Thin Solid Films, 518 (2009) 1072-1078.
[54] J. L. Deng, Control problems of grey system, Syst Control Lett, 5 (1982) 288-294.
[55] J. L. Deng, Introduction to grey system theory, J Grey Syst, 1 1 (1989) 1-24.
[56] M. F. Chen, et al., Laser direct write patterning technique of indium tin oxide film, Thin Solid Films, 515 (2007) 8515-8518.
[57] U. Çaydas, et al., Use of the grey relational analysis to determine optimum laser cutting parameters with multi-performance characteristics, Opt Laser Technol, 40 (2008) 987-994.
[58] M. F. Chen, et al., Optimized laser cutting on light guide plates using grey relational analysis, Opt Laser Eng, 49 (2011) 222-228.
[59] C. H. Wu, On the application of grey relational analysis and RIDIT analysis to likert scale surveys, Int Math Forum (2007) 675–687.
[60] X. Tan, et al., Applications of gray relational analysis in gastroenterology, World J Gastroenterology, 11 (2005) 3457-3460.
[61] C. L. Chang, et al., Applying grey relational analysis to the decathlon evaluation model, Int J Comput Internet Manage, 11 (2003) 54–62.
[62] A. K. Dubey, et al., Multi-objective optimization of Nd:YAG laser cutting of nickel-based superalloy sheet using orthogonal array with principal component analysis, Opt Laser Eng, 46 (2008) 124-132.
[63] Z. H. Li, et al., A new laser direct etching method of indium tin oxide electrode for application to alternative current plasma display panel, Appl Surf Sci, 255 24 (2009) 9843.
[64] M. A. Green, et al., Crystalline silicon on glass (CSG) thin-film solar cell modules, Sol Energy, 77 6 (2004) 857.
[65] J. Lee, et al., Heat treatment effects on electrical and optical properties of ternary compound In2O3–ZnO films, J Appl Phys, 92 (2002) 5761.
[66] T. Miyata, et al., High sensitivity chlorine gas sensor using multi-component transparent conducting oxide thin film, Sens Actuators B Chem, 69 (2000) 16.
[67] T. N. Murakami, et al., Counter electrodes for DSC: Application of functional materials as catalysts, Inorganica Chim Acta, 361 (2008) 572.
[68] Y. He, et al., High-efficiency organic polymer light-emitting heterostructure devices on flexible plastic substrates, Appl Phys Lett, 76 (2000) 661.
[69] M. Ikegami, et al., A platinum/titanium bimetallic layer deposited on polymer film as efficient counter electrodes for plastic dye-sensitized solar cells, Appl Phys Lett, 90 (2007) 153122.
[70] Y. Lin, et al., A study on the wet etching behavior of AZO (ZnO:Al) transparent conducting film, Appl Surf Sci, 254 (2008) 2671.
[71] P. Nunes, et al., Effect of different dopant elements on the properties of ZnO thin films, Vac 64 (2002) 281.
[72] N. R. Franklin, et al., Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems, Appl Phys Lett, 81 (2002) 913.
[73] F. C. Voogt, et al., A combined tem and time-resolved optical reflectivity investigation into the excimer-laser crystallization of a-si films, Thin Solid Films, 383 (2001) 45.
[74] R. A. Lawes, et al., The formation of moulds for 3D microstructures using excimer laser ablation, Microsyst Technol, 3 (1996) 17.
[75] Y. Takamura, et al., Thermal stability of laser annealed dopants in silicon, J Appl Phys, 92 (2002) 230.
[76] M. F. Chen, et al., Examination of the developed scanning system for rgb laser projector with a feedback control, Opt Rev, 18 (2011) 128-131.
[77] J. A. Hoffnagle, et al., Beam shaping with a plano-aspheric lens pair, Opt Eng, 42 (2003) 3090.
[78] Y. C. Tung, Preparation and characterization of Al-and Ga-doped transparent conductive zinc oxide thin films, STUT (2011).
[79] R. Hezel, High-Efficient Low-Cost Photovoltaics, Springer (2009).
[80] H. Chen, et al., Fabrication of sub-wavelength antireflective structures in solar cells by utilizing modified illumination and defocus techniques in optical lithography, Microelec Eng, 84 (2007) 750-754.
[81] N. D. Fatti, et al., Temperature-dependent electron-lattice thermalization in GaAs, Phys Rev B, 59 (1999) 4576.
[82] M. A. Green, Solar cells, The University of New South Wales (1992).
[83] S. D. Zilio, et al., Fabrication of a light trapping system for organic solar cells, Microelec Eng, 86 (2009) 1150-1154.
[84] J. Zhao, et al., 19.8% efficient "honeycomb" textured multicrystalline and 24.4% monocrystalline silicon solar cells, Appl Phys Lett 73 (1998) 1991.
[85] J. Guo, et al., Laser-grooved backside contact solar cells with 680-mv open-circuit voltage, IEEE Trans Electron Devices, 51 (2004) 2186-2192.
[86] L. Sun, et al., A new texturing technique of monocrystalline silicon surface with sodium hypochlorite, Appl Surf Sci, 255 (2009) 9301-9304.
[87] U. Zastrow, et al., Characterization of laser-fired contacts in PERC solar cells: SIMS and TEM analysis applying advanced preparation techniques, Appl Surf Sci, 252 (2006) 7082-7085.
[88] J. Arumughan, et al., Simplified edge isolation of buried contact solar cells, Solar Energy Mater Solar Cells, 87 (2005) 705-714.
[89] W. Li, et al., Focused-ion-beam direct structuring of fused silica for fabrication of nano-imprinting templates, Microelec Eng, 84 (2006) 829-832.
[90] G. Claudio, et al., Surface passivation by silicon nitride in laser grooved buried contact (LGBC) silicon solar cells, Superlattices and Microstructures, 45 (2008) 234-239.
[91] W. Liu, Introduction of CIGS device, PMC (2008).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔