(3.237.97.64) 您好!臺灣時間:2021/03/04 11:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳姿尹
研究生(外文):Chen, Tzu-Yin
論文名稱:ZnO:(Al, Ga)薄膜於非晶矽薄膜太陽電池前電極之研究
論文名稱(外文):Study of ZnO:(Al, Ga) thin films for the front contacts in amorphous silicon solar cells
指導教授:林義成林義成引用關係
指導教授(外文):Lin, Yi-Cheng
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:111
中文關鍵詞:agzo薄膜表面粗化非晶型矽薄膜脈衝磁控濺鍍薄膜太陽能電池
外文關鍵詞:Pulse magnetron sputteringAGZO filmSurface texturingthin film solar cellsAmorphous silicon
相關次數:
  • 被引用被引用:0
  • 點閱點閱:224
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文無中文摘要
In this study, aluminum and gallium co-doped zinc oxide (AGZO) thin films prepared by pulsed direct current magnetron sputtering. Study the electrical properties, transmittance, heat stability, textured effect and applied on the front contact of a-Si:H solar cell. Additionally, AGZO thin films compare with AZO and GZO for total films characteristic and performance for front contact of a-Si:H solar cell. By change the relative position of Al sheet on the GZO target to decide the Al doping concentration of AGZO films. To investigate the heat stability of AGZO films, annealed at temperature of 473 K- 873 K for 30 minutes under argon atmosphere. Surface texturing by 0.5 % and 0.3 % diluted HCl for different etching time then obtained the light trapping structure. Deposit the following a-Si:H layer by plasma enhanced chemical vapor deposition and AZO/Ag contact by in-line sputtering system to accomplish the solar cell. Additionally, AGZO compare with AZO and GZO for total films characteristic and performance for front contact of a-Si:H solar cell. With an energy dispersive spectrometer (Hitachi S3000N) the chemical composition is analyzed, X-ray photoelectron spectroscope (XPS, PHI 5000, VersaProbe) with Al Kα(1486.6 eV, width 0.85 eV) to analysis the chemical state of films, Hall effect measurement (ECOPIA HMS-2000) to obtain the resistivity, mobility, carrier concentration. X-ray diffraction (XRD, SHIMADZU XRD-6000) with Cu Kα radiation to analysis the crystal structure. When AGZO films was prepared, formed a light trapping structure by wet-etching. The surface feature and surface roughness of AGZO films was observed by thermal field emission scanning electron microscope (JEOL TF-SEM JSM7000F). Fiber coupled CCD array spectrometer (Hon Ming MFS-630) to measure the haze value in the wavelength range of 250–900 nm. Cell properties including of I-V curve and quantum efficiency are measured at 100 mW/cm2 using an AM 1.5 solar simulator(ASTM AM1.5). The experimental results showed that an AGZO film with the lowest resistivity of about 8.14×10-4 Ωcm and transmittance is over 80% for Al doping concentration of 0.54 wt.%, under the sputtering power of 150 W, working pressure of 0.4 Pa, pulsed frequency of 10 kHz, substrate temperature of 373 K and thickness of 800 nm. The best heat stability observed at Al doping concentration of 0.54wt.%. The highest haze value of 41.2 %was observed which textured by 0.5 % diluted HCl. The textured AGZO films for front contact in a-Si:H solar cell achieves the results: FF=59 %, VOC=0.77 V, Jsc=16.5 mA/cm2 and conversion efficiency of 7.53 %. For front contact, AZO and GZO have better electric property, transmittance, lattice characteristic than AGZO films, but the transmittance at NIR region decrease with the carrier concentration increase. AZO and GZO have lower short circuit current density and quantum efficiency than AGZO. The could be attribute to carrier concentration decrease, the number of Al3+ or Ga3+ ion which diffuse to the p-layer decrease and the pollution occurred at front contact/ p-layer interface would be improved.
Contents

Contents
Abstract I
Acknowledgement III
Contents IV
Table captions VIII
Figure captions IX
Chapter 1 Introduction 1
1-1 Motivation and aim of study 1
1-2 Contribution of study 2
1-3 Glossary definition 3

Chapter 2 Literature review 4
2-1 The thin film solar cells 4
2-1-1 The basic theory of solar cells 4
2-1-2 The process of amorphous silicon and the device structure 6
2-1-3 I-V characterization of solar cell 8
2-2 The basic theory of transparent conducting oxide films 10
2-2-1 Structure and properties of zinc oxide 10
2-2-2 The Burstein-Moss effect 11
2-2-3 New figure of merit for transparent conductor oxide films 14
2-2-4 Structure and properties of ZnO:Al and ZnO:Ga 15
2-2-5 Influence of carrier concentration of AZO and GZO on the transmittance at the near infrared region 18
2-2-6 The application of transparent conducting oxide films in the thin film solar cells 21
2-3 The basic theory and texture process of transparent conducting oxide films 22
2-3-1 The basic theory of surface texturing 22
2-3-2 The process of surface texturing 24
2-3-3 Influence of texture conditions to transparent conducting oxide films 26
2-4 The basic theory of sputter technology 34
2-4-1 The sputtering theory 34
2-4-2 The magnetron sputtering 37

Chapter 3 Experimental 39
3-1 Experimental process 39
3-2 Material and substrate 41
3-3 Experimental procedure 42
3-3-1 Substrate cleaning 42
3-3-2 Sputtering system and deposited parameter 43
3-3-3 Annealing system and annealing parameter 44
3-3-4 Textured process 46
3-3-5 Plasma enhanced chemical vapor deposition 47
3-3-6 In-line sputtering system 48
3-4 The characterization analysis of AGZO 49
3-4-1 Thermal filed emission scanning electron microscope 50
3-4-2 Grazing incident X-ray diffraction 51
3-4-3 Atomic force microscopy 52
3-4-4 Four-point probe 53
3-4-5 Hall effect measurement 54
3-4-6 UV-VIS-NIR spectrophotometer 55
3-4-7 Fiber coupled CCD array spectrometer 56
3-4-8 X-ray Photoelectron spectroscopy 57
3-4-9 Energy dispersive x-ray spectroscopy 58
3-4-10 Cell characteristic measurement 60

Chapter 4 Results and Discussion 62
4-1Characteristic analysis of AGZO films with different Al doping concentration 62
4-1-1 EDS analysis of AGZO films with different relative position between Al sheet and GZO target 62
4-1-2 Electro optical characteristic of AGZO films with different Al doping concentration 64
4-1-3 Figure of merit of AGZO films with different Al doping concentration 68
4-2 Influence of post annealed process to AGZO films 69
4-2-1 Electro optical characteristic of AGZO films under different post annealed temperature 69
4-2-2 Figure of merit of AGZO films under different anneal temperature 74
4-3 Influence of surface texturing to AGZO films 76
4-3-1Electric property analysis of AGZO films after texturing 76
4-3-2Optical property analysis of AGZO films after texturing 79
4-3-3Surface structure analysis of AGZO films after texturing 83
4-4 Film characteristic analysis of AGZO, AZO and GZO 86
4-4-1 Electro optical characteristic analysis of AGZO, AZO and GZO 87
4-4-2 X-ray diffraction analysis of AGZO, AZO and GZO 90
4-4-3 XPS analysis of AGZO, AZO and GZO 92
4-5 Performance of amorphous silicon thin films solar cells for different front contact 94
4-5-1 Performance of amorphous silicon thin films solar cells for AGZO films with different etching parameter 94
4-5-2 Performance of amorphous silicon thin films solar cells for AZO, GZO and AGZO films 97

Chapter 5 Conclusions 101
5-1 Conclusion 101
5-2 Future studies 103

References 104


Table captions
Table 2-1 Deposition pressure pdep, substrate temperature Ts, film thickness d, aluminum concentration in the films CAl,resistivity ρ, carrier concentration n and mobility μ of the AZO films given in Figure 11 19

Table 2-2 Electrical characteristics of nc-Si solar cells on home grown texture etched AZO films and commercial Asahi U-type SnO2:F coated glass substrates 22

Table 3-1 The composition of the corning 1737F glass 41

Table 4-1 The average haze value at visible region, 380~800nm, under the different texturing conditions 82

Table 4-2 Hall electric property analysis of AGZO, AZO,GZO 89

Table 4-3 Peak degree, full width at half maximum (FWHM) and grain size for AZO, GZO, AGZO films 91

Table 4-4 Peak formula and binding energy of doped atom for
AZO,GZO and AGZO films 93

Table 4-5 Performance of amorphous silicon thin films solar cells for AGZO films with different etching conditions 95

Table 4-6 Performance of amorphous silicon thin films solar cells forAZO, GZO and AGZO 98

Figure captions

Figure 1 The basic principle of solar cells 5

Figure 2 (a) The structure of a-Si:H solar cell 7

(b)Series connection of a-Si:H solar cells on a TCO-coated
glass substrate 7

Figure 3 The equivalent circuit of solar cell 9

Figure 4 The I-V characteristic curve of solar cell 10

Figure 5 The P-V characteristic curve of solar cell 10

Figure 6 The structure of ZnO films 11

Figure 7 Absorption coefficient versus photon energy for pure In2O3and Sn doped In2O3 12

Figure 8 The diagram of Burstein-Moss effect 13

Figure 9 Transmission spectra for the GZO films deposited with various Ga doping concentrations 13

Figure 10 Typical heating temperature dependencies of resistivity for GZO (a) and AZO (b) thin films prepared with various thicknesses by PLD: 30(Δ), 50(□), and 100(○) nm 16

Figure 11 Dependence of the carrier concentration, carrier mobility, and resistivity of AGZO thin films on the RF power for sputtering the GZO target. The DC power for sputtering the AZO target was fixed at 60W 17

Figure 12 The sheet resistance variation of AGZO-RT, AGZO-AN thin films under damp heat conditions film as a function of the exposure time 17

Figure 13 Transmission of different doped AZO films which were deposited by reactive MF sputtering. The subscripts denote the aluminum concentration of the corresponding metallic targetsin at% 18

Figure 14 Transmittance spectra for GZO films with various carrier concentrations from 2.3 × 1020 cm-3 to 10 × 1020 cm-3. The two boundaries (in the near-UV and IR regions) shift to shorter wavelength with the increase of carrier concentration, making the transmittance window narrower 20

Figure 15 The TCO applied to a-Si:H/c-Si:H solar cells 23

Figure 16 The incident light with etching general the (a) transmitted light (b) reflected light 23

Figure 17 TCO films with light trapping structure by CVD process 24

Figure 18 The SEM image of ZnO films deposited by radio frequency magnetron sputtering and textured with HCl 25

Figure 19 The surface structure of films deposited with different working pressure and different substrate temperature and then etching by HCl solution 27

Figure 20 The SEM image of the etched films and the original films 28

Figure 21 The plot of the quantum efficiency and the cell absorption of AZO films before and after texture, and applied to the c-Si:H solar cells 28

Figure 22 EQE spectra of the p-i-n a-Si:H/μc-Si tandem cells equipped with unetched and etched GZO back contacts 29

Figure 23 Variations of (a) etched flims thickness; (b) resistivity; (c)carrier concentration and (d) mobility of post etched ZnO:Al films in pH 1.0 HNO3 solution with different etching times 30

Figure 24 SEM image of the smooth and textured HAZO thin films deposited at an working pressure of 1.2 mtorr and at a
substrate temperature of 150℃: (a) without etching;(b) etched for 10 s; (c) etched for 20 s; (d) etched for 30 s 31

Figure 25 AFM image and rms roughness value of HAZO thin-films deposited at etched time of (a) without etching, (b) 10 s, (c) 20s, (d) 30 s 32

Figure 26 Electrical properties as function of etch time in (a)0.5% HCl solution;(b) 5% oxalic acid solution;(c) 33% KOH solution 33

Figure 27 The reaction diagram of plasma in the chamber 36
Figure 28 The flow chart of experiment process detail 40

Figure 29 The schematic representation of sputtering system 43

Figure 30 The schematic representation of the annealing system 45

Figure 31 The flow chart of textured process 46
Figure 32 Plasma enhanced chemical vapor deposition 47
Figure 33 In-line sputtering system 48
Figure 34 The characterization analysis of AGZO films 49
Figure 35 Thermal field emissions scanning electron microscope 50
Figure 36 The X-ray diffraction measurement 51
Figure 37 Atomic force microscopy 52
Figure 38 Four – point probe 53
Figure 39 Hall effect measurement 54
Figure 40 UV-VIS-NIR spectrophotometer 55
Figure 41 Fiber coupled CCD array spectrometer 56
Figure 42 X-ray Photoelectron spectroscopy 57
Figure 43 Energy dispersive x-ray spectroscopy 58
Figure 44 The relative position of Al sheet and GZO target 59
Figure 45 The solar simulator 60
Figure 46 The quantum efficiency / incident – photon – to electron conversion efficiency measure system 61
Figure 47 The relative position X of Al sheet and GZO target and the EDS composition analysis of AGZO films 63
Figure 48 Hall electric measurement of AGZO films with different Al doping concentration and fixed thickness of 800nm 65
Figure 49 The transmittance of AGZO films with different Al doping concentration 66

Figure 50 The energy gap of AGZO films with different Al dopingconcentration 67

Figure 51 Figure of merit of AGZO films with different Al doping concentration 68

Figure 52 Resistivity variety of AGZO films with different Al doping concentration, under post annealing temperature between 473 Kand873K 71

Figure 53 Transmittance of AGZO films with Al doping concentration of0.54wt.% 72

Figure 54 Variety of energy gap under different annealing temperature 73

Figure 55 Figure of merit of annealed AGZO films with different Al doping concentration.75

Figure 56 The resistivity, carrier concentration and carrier mobility of AGZO films after texturing by 0.5% diluted HCl for different etching time 77

Figure 57 The resistivity, carrier concentration and carrier mobility of AGZO films after texturing by 0.5% diluted HCl for different etching time 78

Figure 58 The haze spectrum of AGZO films textured by 0.5% diluted HCl solution at 3,4,5,6 and 7 seconds 80

Figure 59 The haze spectrum of AGZO films textured by 0.3% diluted HCl solution at 14,16,18,19 and 22 seconds 81

Figure 60 Under the room temperature of 300 K, AGZO films with Al doping concentration of 0.54 wt.% was textured to form a light trapping structure by 0.5 % diluted HCl solution. The surface structure of textured AGZO films would be obtained by SEM, and the picture was taken with a oblique angle of 10 °-15°(a)t=3 s (b) t=4 s (c) t=5 s (d) t=6s (e) t=7s 84

Figure 61 Under the room temperature of 300 K, AGZO films with Al doping concentration of 0.54 wt.% was textured to form a light trapping structure by 0.3 % diluted HCl solution. The surface structure of textured AGZO films would be obtained by SEM, and the picture was taken with a oblique angle of 10 °~15°(a)t=14s (b) t=16s (c) t=18s (d) t=20s (e) t=22s 85

Figure 62 Transmittance at wavelength range of 300-2000nm for AZO,GZO and AGZO films 89

Figure 63 X-ray diffraction pattern for AZO, GZO and AGZO films 91

Figure 64 XPS survey spectra for AZO, GZO and AGZO films 93
Figure 65 I-V parameters of amorphous silicon thin films solar cells for AGZO films with different etching conditions 95
Figure 66 The quantum efficiency of amorphous silicon thin films solar cells for AGZO films textured before and after 96
Figure 67 I-V curve of amorphous silicon thin films solar cells for different front contact, AZO, GZO and AGZO 98

Figure 68 The quantum efficiency of amorphous silicon thin films solar cells for different front contact 100



Reference


[ 1 ] J. Wienke, B.van der Zanden, M. Tijssen, M. Zeman, “Performance of spray-deposited ZnO:In layers as front electrodes in thin-film silicon solar cells”, Solar Energy Materials and Solar Cells 92, 2008, pp.884-890.
[ 2 ] J. A. Anna Selvan, Alan E. Delahoy, Sheyu Guo, Yuan-Min Li, “A new light trapping TCO for nc-Si:H solar cells”, Solar Energy Materials and Solar Cells 90, 2006, pp.3371-3376.
[ 3 ] M. Kambe, M. Fukawa, N. Taneda, K. Sato, “Improvement of a-Si solar cell properties by using SnO2:F TCO films coated with an ultra-thin TiO2 layer prepared by APCVD”, Solar Energy Materials and Solar Cells 90, 2006, pp.3014-3020.
[ 4 ] J. Hupkes, J Muller, and B. Rech, “Texture Etched ZnO: Al for Silicon Thin Film Solar Cells”.
[ 5 ] J. K. Rath , Y. Liu, M. M. de Jong, J. de Wild, J. A. Schuttauf, M. Brinza, R. E. I. Schropp, “Transparent conducting oxide layers for thin film silicon solar cells” Thin Solid Films 518 ,2010,pp.129-135.
[ 6 ] H. Kato, M. Sano, K. Miyamoto, T. Yao, “Growth and characterization of Ga-doped ZnO layers on a-plane sapphire substrates grown by molecular beam epitaxy” Journal of Crystal Growth 237–239, 2002, pp.538-543.
[ 7 ] S. H. Park, J. B. Park, P. K. Song, “ Characteristics of Al-doped, Ga-doped and In-doped zinc-oxide films as transparent conducting electrodes in organic light-emitting diodes”, Current Applied Physics 10, 2010, pp.488-490.
[ 8 ] R. Groenen, J. Loffler, P.M. Sommeling, J.L. Linden, E.A.G. Hamers, R.E.I. Schropp, M.C.M. van de Sanden, “Surface textured ZnO films for thin film solar cell applications by expanding thermal plasma CVD”, Thin Solid Films 392, 2001, pp.226-230.
[ 9 ] B. Rech, S. Wieder, C. Beneking, A. Löffl, O. Kluth, W. Reetz, and H. Wagner, “Texture etched ZnO:Al films as front contact and back reflector in amorphous silicon p-i-n and n-i-p solar cells”, Photovoltaics Specialists Conference 26th, 1997, pp.619-622.
[ 10 ] S. O. Kasap, “Optoelectronics and photonics principles and practices”, Publishing House of Electronics Industry, 2003.
[ 11 ] Y. J. Song, W. A. Anderson,” Amorphous silicon/p-type crystalline silicon hetero-junction solar cells with a microcrystalline silicon buffer layer” Solar Energy Materials & Solar Cells 64, 2000, pp.241-249.
[ 12 ] A. G. Aberle,” Thin-film solar cells” Thin Solid Films 517, 2009, pp.4706-4710.
[ 13 ] W. J. Jeong and G. C. Park, “Electrical and optical properties of ZnO thin film as a function of deposition parameters”, Solar Energy Materials & Solar Cells 65, 2001, pp.37-45.
[ 14 ] X. Hao, J. Ma, D. Zhang, T. Yang, H. Ma, Y. Yang, C. Cheng and J. Huang, “Thickness dependence of structural, optical and electrical properties of ZnO:Al films prepared on flexible substrates”, Applied Surface Science 183, 2001, pp.137-142.
[ 15 ] I. Hamberg, C. G. Granqvist, K. -F. Berggren, B. E. Sernelius, and L. Engström, “Band-gap widening in heavily Sn-doped In2O3”, Physical Review 30, 1984, pp.3240-3249.
[ 16 ] D. L. Raimondi and E. Kay, “High resistivity transparent ZnO thin films”, Journal of Vacuum Science Technology 7, 1970, pp.96-99.
[ 17 ] R. E. I. Schropp and A. Madan , “Properties of conductive zinc oxide films for transparent electrode applications prepared by rf magnetron sputtering”, Journal of Applied Physics 66, 1989, pp.2027.
[ 18 ] G. A. Hirata, J. Mckittrik, T. Cheeks, J. M. Siqueiros, J. A. Diaz, O. Contreras, O. A. Lopez, “Synthesis and optelectronic characterization of gallium doped zinc oxide transparent electrodes”, Thin Solid Films 288, 1996, pp.29-31.
[ 19 ] B. H. Choi and H. B. Im, “Optical and electrical properties of Ga2O3-doped ZnO films prepared by r.f. sputtering”, Thin Solid Films 193, 1990, pp.712-720.
[ 20 ] C. F. Yua, S. H. Chena, S. J. Sunb, H. Chouc, “Influence of the grain boundary barrier height on the electrical properties of Gallium doped ZnO thin films”, Applied Surface Science 257, 2011, pp.6498-6502.
[ 21 ] G. Haacke, “New figure of merit for transparent conductors”, J. Appl. Phys. 47, 1976, pp.4086.
[ 22 ] E. Fortunato, V. Assuncao, A. Goncalves, A. Marques, H. Aguas, L. Pereira, I. Ferreira, P. Vilarinho, R. Martins, ” High quality conductive gallium-doped zinc oxide films deposited at room temperature”, Thin Solid Films 451-452, 2004, pp.443–447.
[ 23 ] H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch, T. Yao, D. C. Look “Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy” Applied Physics. Letters. 77, 2000, pp. 3761.
[ 24 ] R.G. Gordon, “Criteria for Choosing Transparent Conductors” MRS Bulletin 25, 2000, pp.52.
[ 25 ] J. i. Nomoto, M. Konagai, K. Okada, T. Ito, T. Miyata, T. Minam, “Comparative study of resistivity characteristics between transparent conducting AZO and GZO thin films for use at high temperatures”, Thin Solid Films 518 , 2010, pp.2937-2940.
[ 26 ] J. W. Kang, H. W. Kim, C. Lee, “ Electrical Resistivity and Transmittance Properties of Al- and Ga-codoped ZnO Thin Films”, Journal of the Korean Physical Society 56, 2, 2010, pp.576-579
[ 27 ] J. H. Kang, M. H. Lee, D. W. Kim, Y. S. Lim, W. S. Seo, H. J. Choi, “The annealing effect on damp heat stability of AGZO thin films prepared by DC moving magnetron sputtering”, Current Applied Physics online, 2011, pp.1-4.
[ 28 ] R. Groenen, J. Loffler, P. M. Sommeling, J. L. Linden, E. A. G. Hamers, R. E. I. Schropp, M. C. M. van de Sanden, “Surface textured ZnO films for thin film solar cell applications by expanding thermal plasma CVD”, Thin Solid Films 392, 2001, pp.226-230.
[ 29 ] B. Rech, S. Wieder, C. Beneking, A. Löffl, O. Kluth, W. Reetz, and H. Wagner, “Texture etched ZnO:Al films as front contact and back reflector in amorphous silicon p-i-n and n-i-p solar cells”, Photovoltaics Specialists Conference 26th, 1997, pp.619-622.
[ 30 ] K. Ruhi, K. Bengü, “Effects of the back reflector on the optical enhancement factor anf quantum efficiency of a-Si:H p-i-n solar cells”, Department of Physical 26, 2002, pp.363-368.
[ 31 ] J. K. Rath , Y. Liu, M.M. de Jong, J. de Wild, J. A. Schuttauf, M. Brinza, R. E. I. Schropp, “Transparent conducting oxide layers for thin film silicon solar cells”, Thin Solid Films 518, 2010, pp.129-135.
[ 32 ] T. Tohsophon, J. Hupkes, H. Siekmann, B. Rech, M. Schultheis, N. Sirikulrat, “High rate direct current magnetron sputtered and texture-etched zinc oxide films for silicon thin film solar cells”, Thin Solid Films 516, 2008, pp.4628-4632.
[ 33 ] J. Springer, B. Rech, W. Reetz, J. M. uller, M. Vanecek “Light trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates” Solar Energy Materials & Solar Cells 85, 2005, pp.1-11.
[ 34 ] J. Krc, M. Zeman, O. Kluth, F. Smolea, M. Topic, “Effect of surface roughness of ZnO:Al films on light scattering in hydrogenated amorphous silicon solar cells”, Thin Solid Films 426, 2003, pp. 296-304.
[ 35 ] http://www.agc.co.jp/english/rd/topics_04.html
[ 36 ] J. Muller, B. Rech, J. Springer, M. Vanecek, “TCO and light trapping in silicon thin film solar cells”, Solar Energy 77, 2004, pp.917-930.
[ 37 ] J. Hupkes, B. Rech, S. Calnan, O. Kluth, U. Zastrow, H. Siekmann, M.Wuttig, “Material study on reactively sputtered zinc oxide for thin film silicon solar cells”, Thin Solid Films 502, 2006, pp. 286-291.
[ 38 ] J. Hupkes, B. Rech, O. Kluth, T. Repmann, B. Zwaygardt, J. Muller, R.Drese, M. Wuttig, “Surface textured MF-sputtered ZnO films for microcrystalline silicon-based thin-film solar cells”, Solar Energy Materials & Solar Cells 90, 2006, pp.3054-3060.
[ 39 ] W. Beyer, J. Hupkes , H. Stiebig, “Transparent conducting oxide films for thin film silicon photovoltaics”, Thin Solid Films 516, 2007, pp.147-154.
[ 40 ] K. C. Lai, F. J. Tsai, J. H. Wang, C. H. Yeh, M. P. Houng, ” Texturing of the back reflector for light trapping enhancement in micromorph thin film solar cells”, Thin Solid Films 519, 2011, pp.3946-3949.
[ 41 ] W. L. Lu, K. C. Huang, C. H. Yeh, C. I. Hung, M. P. Hounga , “ Investigation of textured Al-doped ZnO thin films using chemical wet-etching methods ”, Materials Chemistry and Physics 127, 1-2, 2011, pp.358-363.
[ 42 ] S. J. Tark, M. G. Kang, S. Park, J. H. Jang, J. C. Lee, W. M. Kim, J. S. Lee, D. Kim, “ Development of surface-textured hydrogenated ZnO:Al thin-films for c-Si solar cells”, Current Applied Physics 9, 2009, pp.1318-1322.
[ 43 ] W. T. Yen, Y. C. Lin, J. H. Ke, ” Surface textured ZnO:Al thin films by pulsed DC magnetron sputtering for thin film solar cells applications”, Applied Surface Science 257, 2010, 960-968.
[ 44 ] A. Belkind, Z. Zhao, D. Carter, L. Mahoney, G. McDonough, G. Roche, R. Scholl and H. Walde, “Pulsed-DC reactive sputtering of dielectrics: pulsing parameter effects”, 43rd Annual Technical Conference Proceedings - Denver (Society of Vacuum Coaters), 2000, pp.86-90.
[ 45 ] T. Hata, S. Nakano, Y. Masuda, K. Sasaki, Y. Haneda and K. Wasa, “Heteroepitaxial growth of YSZ films on Si(100) substrate by using new metallic mode of reactive sputtering”, Vacuum 51, 1998, pp.583-590.
[ 46 ] T. C. Gorjanc, D. Leong, D. Roth, “Room temperature deposition of ITO using RF magnetron sputtering”, Thin Solid Films 413, 2002, pp.181-185.
[ 47 ] H. C. Lee, J. Y. Seo, Y. W. Choi, D. W. Lee, “The growth of indium tin oxide thin films on glass substrates using DC reactive magnetron sputter”, Vacuum, 72, 2004, pp.269-276.
[ 48 ] 楊明輝, “脈衝磁控濺鍍技術介紹”,工業材料 232, 2006,pp.91-98.
[ 49 ] 溫志中, “電漿粒子與物理薄膜沈積的關聯與發展”, 工業材料, 2004, pp77-83.
[ 50 ] J. Hupkes, B. Rech, S. Calnan, O. Kluth, U. Zastrow, H. Siekmann, M. Wuttig,” Material study on reactively sputtered zinc oxide for thin film silicon solar cells”, Thin Solid Films 502, 2006, pp.286- 291.
[ 51 ] H. Liu, V. Avrutin, N. Izyumskaya, U. Ozgur, H. Morkoc, “ Transparent conducting oxides for electrode applications in light emitting and absorbing devices”, Superlattices and Microstructures 48, 2010, pp.458-484.
[ 52 ] http://www.corning.com/
[ 53 ] D. Dimova-Malinovska, N. Tzenov, M. Tzolov, L. Vassilev, “Optical and electrical properties of R.F. magnetron sputtered ZnO:Al thin films”, Materials Science and Engineering B52, 1998, pp.59-62.
[ 54 ] H. Stiebig, F. Siebke, W. Beyer, C. Beneking, B. Rech, H. Wagner, “ Interfaces in a-Si:H solar cell structures”, Solar Energy Materials and Solar Cells 48, 1997, pp.351-363
[ 55 ] B. Rech, T. Repmann, M. N. van den Donker, M. Berginski, T. Kilper, J. Hupkes, S. Calnan, H. Stiebig, S. Wieder, “Challenges in microcrystalline silicon based solar cell technology”, Thin Solid Films 511-512, 2006, pp.548-555.
[ 56] Z. C. Jin, L. Hamberg, and C. G. Granqvist, “Optical properties of sputter - deposited ZnO:Al thin films” J. Appl. Phys. 64, 1988, pp.10.
[ 57 ] K. Matsubara, P. Fons, K. Iwata, A. Yamada, K. Sakurai, H. Tampo, S. Niki, “ZnO transparent conducting films deposited by pulsed laser deposition for solar cell applications”, Thin Solid Films 431-432, 2003, pp.369-372.
[ 58 ] S. Suzuki, T. Miyata, M. Ishii, T. Minami, “Transparent conducting V-co-doped AZO thin films prepared by magnetron sputtering”, Thin Solid Films 434, 2003, pp.14-19.
[ 59 ] Y. C. Lin , B. L. Wang, W. T. Yen, C. H. Shen, Surface textured molybdenum doped zinc oxide thin films prepared for thin film solar cells using pulsed direct current magnetron sputtering, Thin Solid Films 519, 2011, 5571-5576.
[ 60 ] T. J. Coutts, D. L. Young and Xiaonan Li, “Characterization of Transparent Conducting Oxide”, MRS Bulletin 25, 08, 2000, pp.58-65.
[ 61 ] http://srdata.nist.gov/xps/ElmComposition.aspx
[ 62 ] F. Wu, L. Fang, Y. J. Pan, K. Zhou, Q. L. Huang, C. Y. Kong, “Effect of substrate temperature on the structural, electrical and optical properties of ZnO:Ga thin films prepared by RF magnetron sputtering”, Physica 43, 2010, pp.228-234.
[ 63 ] H. Kato, M. Sano, K. Miyamoto, T. Yao, “Growth and characterization of Ga-doped ZnO layers on a-plane sapphire substrates grown by molecular beam epitaxy”, Journal of Crystal Growth 237-239, 2002, pp.538-543.
[ 64 ] M. Python, O. Madani, D. Domine, F. Meillaud, E. V. Sauvain 1, C. Ballif, “Influence of the substrate geometrical parameters on microcrystalline silicon growth for thin-film solar cells” Solar Energy Materials & Solar Cells 93, 2009, pp.1714-1720.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔