(3.235.41.241) 您好!臺灣時間:2021/04/11 22:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林芝伃
研究生(外文):Lin, Chih-Yu
論文名稱:植物性乳酸菌發酵豆渣之研究
論文名稱(外文):Preparation of Okara Product by Fermentation with Plant Origin Lactic Acid Bacteria
指導教授:翁義銘翁義銘引用關係
指導教授(外文):Weng, Yih-Ming
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:食品科學系研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:91
中文關鍵詞:豆渣植物性乳酸菌發酵大豆異黃酮
外文關鍵詞:okaraplant origin lactic acid bacteriafermentationsoy isoflavone
相關次數:
  • 被引用被引用:10
  • 點閱點閱:2972
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
黃豆 (Glycine max (L.) Merrill) 為豆科、大豆屬之一年生草本植物,含有許多具生物活性之營養成分,如蛋白質、脂質、膳食纖維及大豆異黃酮等物質。有文獻指出黃豆具有許多生物效能,包含抗癌、抗氧化、預防骨質疏鬆症及降低血液中的膽固醇等作用。然而黃豆經榨漿後剩餘之副產物–豆渣,雖然仍含有許多的營養素及機能性成分,但卻因為水份含量高,易有腐敗、不易保存及搬運等問題,多被丟棄或是作為低經濟價值之動物飼料。因此本研究應用植物性乳酸菌發酵豆渣,探討植物性乳酸菌發酵菌株、較適發酵條件、測定其異黃酮含量之變化並製作發酵飲品,期以乳酸菌發酵豆渣開發保健產品,充分利用大豆加工之廢棄物,提高豆渣之經濟價值。
探討植物性乳酸菌發酵菌株,本研究利用Lactobacillus plantarum BCRC10069、Lac. brevis BCRC12310及Leuconostoc mesenteroids BCRC12273作為測試菌株。實驗結果顯示以Lac. plantarum BCRC10069和Lac. brevis BCRC12310具有較佳的發酵能力,乳酸菌數皆可達8.9 log CFU/mL以上,pH值約為4.5,而Leu. mesenteroids BCRC12273對於豆渣的發酵能力明顯地較其他兩株乳酸菌低,且在發酵終了時,其菌數量降至2.83 log CFU/mL。而較適發酵條件之探討,由發酵期間的乳酸菌數及可滴定酸變化,可得乳酸菌於30℃下發酵1天為其較適發酵條件,其菌數量皆可達108 CFU/mL以上。
由於乳酸菌為可利用碳水化合物產生乳酸之微生物,因此本研究利用常見之白砂糖及紅糖作為營養添加物,探究營養物質對乳酸菌在發酵期間之變化。由實驗結果可比較出紅糖對於Lac. plantarum BCRC10069和Lac. brevis BCRC12310在可滴定酸含量的表現具有顯著性的差異。以Lac. brevis BCRC12310為例,於發酵終了,其可滴定酸可達0.16-0.27 g/ 100 mL,而pH值以有糖類添加組別下降較多,但添加之種類及比例並無顯著差異。但是營養物質之添加對乳酸菌數並無顯著性的差異,且在後續的發酵期間,乳酸菌數反而會因為添加營養物質而下降。異黃酮含量測定部分,Lac. plantarum BCRC10069和Lac. brevis BCRC12310於發酵期間皆能有效的將daidzin及genistin轉換成具生理活性的daidzein和genistein。營養物質的添加,也有助於乳酸菌對異黃酮的生物轉化作用,Lac. brevis BCRC12310的daidzein和genistein約增加55-65 μg/mL和30-37 μg/mL。而Lac. plantarum BCRC10069以紅糖添加組之轉換量較高,分別增加72-80 μg/mL和44-55 μg/mL。
上述結果顯示,營養物質添加至豆渣發酵液中可增加可滴定酸及異黃酮daidzein和genistein含量,並降低pH值,且感官品評的結果,也以Lac. plantarum BCRC10069發酵含有1%白砂糖豆渣基質及Lac. brevis BCRC12310發酵含有2%紅糖豆渣基質之飲品為受試者接受度最高之成品。

Soybean (Glycine max (L.) Merrill) is an annual plant belonging to the family of Fabaceae. Soybean contains abundant nutrients including proteins, lipids, dietary fiber, and isoflavones. Many researches indicate that the functional properties of soybean include decrease of blood cholesterol, anticarcinogenic, antioxidative, and antiosteoporotic effects. Okara is a by-product obtained during the production of soymilk. Due to the high moisture content and bulky volume, okara is perishable and not easy to store or transport. However, okara still contains considerable amount of nutrients and can be used as low-valued animal feed. In the present research, the plant origin lactic acid bacteria were used to ferment okara and the fermented okara drink was developed in order to enhance the economic value of okara. The selection of lactic acid bacterial strains and the optimal fermentation conditions were investigated.
Three plant origin lactic acid bacterial strains, Lactobacillus plantarum BCRC10069, Lac. brevis BCRC12310 and Leuconostoc mesenteroids BCRC12273, were tested for feasibility of okara fermentation. The experimental results depicted that Lac. plantarum BCRC10069 and Lac. brevis BCRC12310 showed the better fermentation capability with lactic acid bacterial count of 8.9 log CFU/mL and pH 4.5. However, Leu. mesenteroids BCRC1227 exerted lower fermentation capability with the lactic acid bacterial count decreasing to 2.83 log CFU/mL at the end of fermentation. According to the lactic acid bacterial count (more than 108 CFU/mL) and the titratable acidity, the optimal fermentation conditions were 30℃ and 24 hr.
To fortify the fermentation medium, white granulated sugar and brown sugar were added to investigate the effects of fermentable sugar on lactic acid bacteria fermentation. For Lac. plantarum BCRC10069 and Lac. brevis BCRC12310, significant difference was observed when brown sugar was added into fermentation medium. For example, the amount of titratable acidity can achieve 0.16-0.27 g/ 100mL at the end of fermentation when fermented with Lac. brevis BCRC12310. Although the decrease of pH was also detected when sugars were added, no significant difference was observed. However, the addition of nutrients had no significant difference in the lactic acid bacteria count. Moreover, the bacterial count of sugar adding fermentation okara was further lowed if the fermentation time was longer than 3 days. As for the soybean isoflavones, daizin and genistin could be effectively transformed to bioactive daidzein and genistein during the fermentation by Lac. plantarum BCRC10069 and Lac. brevis BCRC12310. Sugar supplementation also enhanced the transformation of glycosides to bioactive aglycons. When fermented with Lac. brevis BCRC12310 supplemented with both types of sugar, the increases of daidzein and genistein were about to 55-65 μg/mL and 30-37 μg/mL, respectively. When fermented with Lac. plantarum BCRC10069 supplemented with brown sugar, the amount of daidzein and genistein increased 72-80 μg/mL and 44-55 μg/mL, respectively.
The above experimental results indicated that the fermented okara with addition of nutrients can increase the titratable acidity and the amounts of daidzein and genistein, and decrease the pH value. Moreover, according to sensory evaluation, the highest acceptance of lactic acid fermented okara drink could be obtained by using Lac. plantarum BCRC10069 with 1% white granulated sugar, or using Lac. brevis BCRC12310 with 2% brown sugar.

目 錄

目錄 Ⅰ
表目錄 Ⅴ
圖目錄 Ⅵ
中文摘要 Ⅷ
ABSTRACT Ⅹ
壹、前言 1
貳、文獻回顧 3
一、大豆 (Soybean) 3
(一) 大豆分布及消費 3
(二) 大豆成份及營養價值 3
(三) 大豆的保健功效 4
(四) 大豆製品 7
(五) 豆渣成分及利用 7
二、大豆異黃酮 (Isoflavone) 10
(一) 異黃酮結構與成分 10
(二) 加工及儲藏對異黃酮的影響 15
(三) 異黃酮之生理代謝 18
(四) 異黃酮之生理活性 20
三、乳酸菌 (Lactic acid bacteria) 22
(一) 定義與分類 22
(二) 乳酸菌特性 22
(三) 植物性乳酸菌 (Plant origin lactic acid bacteria) 25
四、益生菌 (Probiotic) 27
(一) 定義 27
(二) 作為益生菌應具備的條件 27
(三) 常作為益生菌之乳酸菌 28
(四) 益生菌之機能性 28
參、材料與方法 33
一、實驗架構 33
二、實驗材料 34
(一) 黃豆渣 34
(二) 食品原料 34
(三) 化學試藥 34
(四) 異黃酮標準品 34
(五) 實驗菌株 35
(六) 微生物培養基 35
(七) 儀器設備 35
三、實驗方法 36
(一) 豆渣一般成分分析 36
1. 水分 36
2. 粗蛋白含量 36
3. 粗脂肪含量 37
4. 粗纖維含量 37
5. 灰分 38
6. 無氮抽出物 38
(二) 菌株活化 38
(三) 豆渣發酵液配製 39
(四) 豆渣發酵液製備 39
1. 豆漿菌酛製作 39
2. 製作豆渣發酵液 39
(五) 豆渣發酵條件確立 40
1. 發酵菌株 40
2. 發酵溫度 40
3. 接菌量 40
4. 營養添加物 40
(六) 豆渣發酵液測定 40
1. pH值 40
2. 可滴定酸 41
3. 乳酸菌菌數 41
(七) 異黃酮含量測定 41
1. 異黃酮萃取 41
2. HPLC定量 41
(八) 豆渣發酵飲品最適化條件測試 42
1. 飲品調製 42
(1) 豆渣 42
(2) 豆漿 42
2. 感官品評 43
(九) 統計分析 43
肆、結果與討論 44
一、豆渣一般成分分析 44
二、豆渣發酵條件確立 44
(一) 發酵菌株 44
(二) 發酵溫度 45
(三) 營養添加物 46
三、豆渣發酵飲品最適化條件測試 48
伍、結論 49
陸、參考文獻 81

廖啟成,1998。乳酸菌之分類及應用。食品工業,30 (2),1-10。
林怡雅,2005。探討生物聚醣三仙膠在生物吸附程序的應用。中原大學化學工程學系碩士論文。桃園。
林寅申,2003。發酵豆漿之乳清對血管升壓素轉換酶及脂氧合酶之抑制及其降低高血壓的效果。國立海洋大學食品科學系碩士論文。基隆。
岡田早苗,2008。亞洲傳統發酵食品中植物性乳酸菌之新應用。植物性乳酸菌研討會。台北。
侯信獻,2008。Bacillus subtilis YJ-3生產蛋白之條件探討及開發機能性大豆胜肽鈣乳酸菌發酵產品。國立海洋大學食品科學系碩士論文。基隆。
黃國書,2007。加工製程對組織化大豆蛋白內異黃酮類含量之影響。國立屏東科技大學食品科學系碩士論文。屏東。
黃建榕、凃榮珍,2005。植物性來源乳酸菌之篩選、特性及應用於乳製產品方面之研究 (Ⅰ) -植物性來源乳酸菌之篩選及一般特性之探討。畜產研究,38 (2)。145-152。
邱致廣,1992。酸菜醃製過程中微生物與風味物質之變化。國立中興大學食品科學系博士論文。台中。
孫君明、孫寶利、韓粉霞、關淑榮、楊華、菊池彰夫,2009。快速檢測大豆籽粒中十二種異黃酮組成份HPLC方法。中國農業科學,42 (7),2491-2498。
陳歆翎,2007。發酵食品中耐鹽乳酸菌之篩選。朝陽科技大學應用化學系碩士論文。台中。
陳俞伶,2005a。發酵豆乳中活性胜肽之生產。國立海洋大學食品科學系碩士論文。基隆。
陳怡德,2005b。不同擠壓加工對組織化植物蛋白理化性質之研究。屏東科技大學食品科學系碩士論文。屏東。
鄭翕宸,2005。探討乳酸菌發酵對芋香豆漿製品之保健功能性。國立海洋大學食品科學系碩士論文。基隆。
鄭秀粧,2004。乳酸菌於黑豆奶還原奶中成長情形及儲藏期間變化。國立中興大學食品科學系碩士論文。台中。
朱菀蓉,2007。豆製加工品中異黃酮含量之變化。輔仁大學食品科學系碩士論文。台北。
曾浩洋,2008。植物來源功能性乳酸菌之篩選及應用。植物性乳酸菌研討會。台北。
曾勝雄、江文章,2003。不同產地及品種對糙薏仁營養成分之影響。臺中區農業改良場研究彙報,81,31-41。
蔡吉齡,2002。發酵蔬菜中乳酸菌的分離鑑定及其當作益生菌之分析。大同大學生物工程研究所碩士論文。桃園。
王姿惠,2001。益生菌於含果寡糖之培養環境中生長情形之探討。國立中興大學碩士食品暨應用科學系碩士論文。台中。
Abadias, M., Benabarre, A., Teixido, N., Usall, J. and Vinas, I., 2001. Effect of freeze drying and protectants on viability of the biocontrol yeast Candida sake. International Journal of Food Microbiology, 65, 173-182.
Achouri, A., Boye, J. I. and Belanger, D., 2005. Soybean isoflavones: Efficacy of extraction conditions and effect of food type on extractability. Food Research International, 38, 1199-1204.
Amadou, I., Sun, J. and Le, G. W., 2009. Fermented soybean products: some methods, antioxidants compound extraction and their scavenging activity. Asian Journal of Biochemistry, 4 (3), 68-76.
Amin, I. and Mukhrizah, O., 2006. Antioxidant capacity of methanolic and water extracts prepared from food-processing by-products. Journal of the Science of Food and Agriculture, 86 (5), 778-784.
Anderson, J. J. B. and Garner, S. C., 1997. The effects of phytoestrogens on bone. Nutrition Research, 17, 1617-1632.
Anderson, J. W., Johnstone, B. M. and Cook-Newell, M. E., 1995. Meta-analysis of effects of soy protein intake on serum lipids in human. The New England Journal of Medicine, 333, 276-282.
Anil, M., 2007. Using of hazelnut testa as a source of dietary fiber in bread making. Journal of Food Engineering, 80, 61-67.
AOAC International. 2000. Official Methods of Analysis of the Association of Official Analytical Chemists International. The Association of Official Analytical Chemists International, Maryland, USA.
Brouns, F., 2002. Soya isoflavones: a new and promising ingredient for the health food sector. Food Research International, 35, 187-193.
Cederroth, C. R. and Nef, S., 2009. Soy phytoestrogens and metabolism: A review. Molecular and Cellular Endocrinology, 204, 30-42.
Clarkson, T. B., Anthony, M. S. and Hughes, C. L., 1995. Estrogenic soybean isoflavone and chronic disease:risks and benefits. Trends in Endocrinology Metabolism, 6, 11-16.
Denter, J. and Bisping, B., 1994. Formation of B-vitamins by bacteria during the soaking process of soybeans for temper fermentation. International Journal of Food Microbiology, 22 (1), 23-31.
Desiere, F., Lucchini, S., Canchaya, C., Ventura, M. and Brussow, H., 2002. Comparative genomics of phages and prophages in lactic acid bacteria. Antonie van Leeuwenhoek, 82, 73-91.
Dixon, R. A. and Ferreira, D., 2002. Genistein. Phytochemistry, 60, 205-211.
Duboc, P and Mollet, B., 2001. Application of exopolysaccharides in the dairy industry. International Dairy Journal, 11, 759-768.
Espinosa-Martos, I. and Rupérez, P., 2009. Indigestible fraction of okara from soybean: composition, physicochemical properties and in vitro fermentability by pure cultures of Lactobacillus acidophilus and Bifidobacterium bifidum. European Food Research and Technology, 228, 685-693.
Genta, H. D., Genta, M. L., Alvarez, N. V. and Stantana, M. S., 2002. Production and acceptance of a soy candy. Journal of Food Engineering, 53, 199-202.
Gibbs, B. F., Zougman, A., Masse, R. and Mulligan, C., 2004. Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food. Food Research International, 37, 123-131.
Gibson, G. R. and Roberfroid, M. B., 1995. Dietary modulation of the human colonic microta: Introducing of the concept of prebiotics. Journal of Nutrition, 125, 1401-1412.
Ho, H. M., Chen, R. Y., Leung, L. K., Chan, F. L., Huang, Y. and Chen, Z. Y., 2002. Difference in flavonoid and isoflavone profile between soybean and soy leaf. Biomedicine and Pharmacotherapy, 56, 289-295.
Holzapfel, W. H., Haberer, P., Johannes, S., Schillinger, U. and Veld, J. H., 1998. Overview of gut flora and probiotics. International Journal of Food Microbiology, 41, 85-101.
Hutchins, A. M., McIver, I. E. and Johnston, C. S., 2005. Soy isoflavone and ascorbic acid supplementation alone or in combination minimally affect plasma lipid peroxides in healthy postmenopausal woman. Journal of the American Dietetic Association, 105, 1134-1137.
Izumi, T., Piskula, M. K., Osawa, S., Obata, A., Tobe, K., Saito, M., Kataoka, S., Kubota, Y. and Kikuchi, M., 2000. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. The Journal of Nutrition, 130 (7), 1695-1699.
Jandula, A. M., Alvarez, N. V. and Genta, M. L., 1991. Development of nutritional products with high energy and protein content with raw materials from northwest region of Argentina (NOA). Universidad Nacional de Tucuman Informa, 15, 5.
Jang, C. H., Lim, J. K., Kim, J. H., Park, C. S., Kwon, D. Y. and Kim, Y. S., 2006. Change of isoflavone content during manufacturing of Chungkookjang, a traditional Korea fermented soyfood. Food Science and Biotechnology, 15, 643-646.
Jimenez-Escrig, A., Tenorio, M. D., Espinosa-Martos, I. and Ruperez, P., 2008. Health-promoting effects of a dietary fiber concentrate from the soybean by-product okara in rats. Journal of Agricultural and Food Chemistry, 56, 7495-7501.
Kao, T. H., Lu, Y. F., Hsieh, H. C. and Chen, B. H., 2004. Stability of isoflavone glucosides during processing of soymilk and tofu. Food Research International, 37, 891-900.
Kapiotis, S., Hermann, M., Held, I., Seelos, C., Ehringer, H. and Gmeiner, B. M. K., 1997. Genistein, the dietary-derived angiogenesis inhibitor, prevents LDL oxidation and protects endothelial cells from damage by atherogenic LDL. Arteriosclerosis, Thrombosis, and Vascular Biology, 17, 2868-2874.
Khare, S. K., Jha, K. and Gandhi, A. P., 1995. Citric acid production from okara (soy-residue) by solid-state fermentation. Bioresource Technology, 54, 323-325.
Kim, J. J., Kim, S. H., Hahn, S. J. and Chung, Ill. M., 2005. Changing soybean isoflavone composition and concentrations under two different storage conditions over three years. Food Research International, 38, 435-444.
Klein, G., Pack, A., Bonaparte, C. and Reuter, G., 1998. Taxonomy and physiology of probiotic lactic acid bacteria. International Journal of Food Microbiology, 41, 103-125.
Kwak, C. S., Lee, M. S. and Park, S. C., 2007. Higher antioxidant properties of Chungkookjang, a fermented soybean paste, may be due to increased aglycone and malonylglycoside isoflavone during fermentation. Nutrition Research, 27, 719-727.
Kwon, D. Y., Jang, J. S., Lee, J. E., Kim, Y. S., Shin, D. H. and Park, S., 2006. The isoflavonoid aglycone-rich fractions of Chungkookjang, fermented unsalted soybean, enhance insulin signaling and peroxisome proliferator-activated receptor-γ activity in vitro. Biofactors, 26, 245-258.
Lee, C. H., Yang, L., Xu, J. Z., Yeung, S. Y. V., Huang, Y. and Chen, Z. Y., 2005. Relative antioxidant activity of soybean isoflavones and their glycosides. Food Chemistry, 90, 735-741.
Lee, Y. K. and Salminen, S., 1995. The coming of age of probiotics. Trends in Food Science and Technology, 6, 241-245.
Leroy, F. and Vuyst, L. D., 2004. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends in Food Science and Technology, 15 (2), 67-78.
Liu, K., 1999. Soybeans: Chemistry, Technology and Utilization. Aspem Publishers, Gaithersburg, Maryland, USA.
Loward, L., Smith, M., Kirk, M. and Barnes, S., 1998. Chemical modification of isoflavones in soy foods during cooking and processing. The American Journal of Clinical Nutrition, 68 (suppl), 1486-1491.
Magnusson, J., Jonsson, H., Schnurer, J. and Roos, S., 2002. Weissella soli sp. nov., a lactic bacterium isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 52, 831-834.
Mateos-Aparicio, I., Mateos-Peinado, C. and Rupérez, P., 2010. High hydrostatic pressure improves the functionality of dietary fibre in okara by-product from soybean. Innovative Food Science and Emerging Technologies, 11, 445-450.
Matsumoto, K., Watanable, Y.,Yokoyama, S. I., 2007. Okara, soybean residue, prevent obesity in a diet- induced murine obesity model. Bioscience, Biotechnology, and Biochemistry, 71, 720-727.
Matsuura, M. and Obata, A., 1993. β-Glucosidase from soybean hydrolyze daidzein and genistein. Journal of Food Science, 54, 602-607.
Naidu, A. S., Bidlack, W. R. and Clemes, R. A., 1999. Probiotic spectra of lactic acid bacteria. Food and Nutrition in Health, 38, 13-26.
Nielsen, I. and Williamson, G., 2007. Review of the factors affecting bioavailability of soy isoflavones in humans. Nutrition and Cancer-An International Journal, 57 (1), 1-10.
Ohno, A., Ano, T. and Shoda, M., 1996. Use of soybean curd residue, okara, for the solid state substrate in the production of a lipopeptide antibiotic, Iturin A, by Bacillus subtilis NB22. Process Biochemistry, 31 (8), 801-806.
Otieno, D. O., Ashton, J. F. and Shah, N. P., 2007. Isoflavone phytoestrogen degradation in fermented soymilk with selected β-glucosidase producing Lactobacillus acidophilus strains during storage at different temperatures. International Journal of Food Microbiology, 115, 79-88.
Pham, T. T. and Shah, N. P., 2007. Biotransformation of isoflavone glycosides by Bifidobacterium animalis in soymilk supplemented with skim milk powder. Journal of Food Science, 72, M316-M324.
Pham, T. T. and Shah, N. P., 2008. Skim milk powder supplementation affects lactose utilization, microbial survival and biotransformation of isoflavone glycosides to isoflavone aglycones in soymilk by Lactobacillus. Food Microbiology, 25, 653-661.
Pinto, M. D. S., Lajolo, F. M. and Genovese, M. I., 2005. Effect of storage temperature and water activity on the content and profile of isoflavone, antioxidant activity, and in vitro protein digestibility of soy protein isolate and defatted soy flours. Journal of Agricultural and Food Chemistry, 53, 6340-6346.
Pratt, D. E. and Porter, W. L., 1981. Phenolic antioxidants of soy protein hydrolyzates. Jorunal of Food Science, 49, 24-25.
Prestamo, G., Ruperez, P., Espinosa-Martos, I., Villanueva, M. J. and Lasuncion, M. A., 2007. The effects of okara on rat growth, caecal fermentation, and serum lipid. European Food Research and Technology, 225, 925-928.
Redondo-Cuenca, A., Villanueva-Sua’rez, M. J. and Mateos-Aparicio, I., 2008. Soybean seeds and its by-product okara as sources of dietary fibre. Measurement by AOAC and Englyst methods. Food Chemistry, 108, 1099-1105.
Redondo-Cuenca, A., Villanueva-Sua’rez, M. J., Rodriguez-Sevilla, M.D. and Mateos-Aparicio, I., 2006. Chemical composition and dietary fibre of yellow and green commercial soybeans (Glycine max). Food Chemistry, 101, 1216–1222.
Rinaldi, V. E. A., Ng, P. K. W. and Bennink, M. R., 2000. Effects of extrusion on dietary fiber and isoflavone contents of wheat extrudates enriched with wet okara. Cereal Chemistry, 77, 237-240.
Rodríguez, H., Curiel, J. A., Landete, J. M., de las Rivas, B., de Felipe, F. L., Gómez-Cordovés, C., Mancheño, J. M. and Muñoz, R., 2009. Food phenolics and lactic acid bacteria. International Journal of Food Microbiology, 132, 79-90.
Romero, A. M., Dovel, M. M., Sturla, M. A. and Judis, M. A., 2004. Antioxidant properties of polyphenol-containing extract from soybean fermented with Saccharomyces cerevisiae. European Journal of Lipid Science and Technology, 106, 424-431.
Saarela, M., Lahteenmaki, L., Crittenden, R., Salminen, S. and Mattila-Sandholm, T., 2002. Gut bacteria and health foods—the European perspective. International Journal of Food Microbiology, 78, 99-117.
Saitoh, S., Sato, T., Harada, H. and Matsuda, T., 2004. Biotransformation of soy isoflavone-glycosides in laying hens: intestinal absorption and preferential accumulation into egg yolk of equol, a more estrogenic metabolite of daidzein. Biochimica et Biophysica Acta, 1674, 122-130.
Shi, J., Mazza, G. and Maguer, M. L., 2002. Functional foods: biochemical and processing aspects. PA: Technomic Pub. Lancaster. pp. 20-27.
Shibata, H., 2007. Immunological functions of plant origin Lactobacillus pentosus strain S-PT84. Foods and Food Ingredients Journal of Japan, 212 (3), 196-207.
Stiles, M. E. and Holzapfel, W. H., 1997. Lactic acid bacteria of foods and their current taxonomy. International Journal of Food Microbiology, 36, 1-29.
Tsangalis, D., Ashton, J. F., Stojanovska, L., Wilcox, G. and Shah, N. P., 2004. Development of an isoflavone aglycone-enriched soymilk using soy germ, soy protein isolate and bifidobacteria. Food Research International, 37, 301-312.
Turner, N. J., Thomson, B. M. and Shaw, I. C., 2003. Bioactive isoflavones in functional foods: The importance of gut microflora on bioavailability. Nutrition Review, 61 (6) 204-213.
Wang, H. L. and Cavins, J. F., 1989. Yield and amino acid composition of fractions obtained during tofu production. Cereal Chemistry, 66, 359-361.
Welling, R. G., 1986. First-pass metabolism, enterohepatic circulation, and pyhtochemical factor affecting absorption. In : pharmacokinetics processes and methematics. Welling, R. G. (ed.). pp.35-44. American Chemical Society, Washington, D. C.
Yambe, S., Kobayashi-Hattori, K., Kaneko, K., Endo, H. and Takita, T., 2007. Effect of soybean varieties on the content and composition od isoflavone in rice-koji miso. Food Chemistry, 100, 369-374.
Yang, S., Wang, L., Yan, Q., Jiang. Z. and Li, L., 2009. Hydrolysis of soybean isoflavone glycosides by a thermostable β-glucosidase from Paecilomyces thermophila. Food Chemistry, 115, 1247-1252.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔