(3.235.41.241) 您好!臺灣時間:2021/04/15 03:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳書儀
研究生(外文):Shu-Yi Chen
論文名稱:蜂房萃取物之抗菌性及其再製酒之機能性探討
論文名稱(外文):The Antimicrobial Activity and Functional Properties in Macerated Honey Liqueur of Nidus Vespae
指導教授:翁義銘翁義銘引用關係
指導教授(外文):Yih-Ming Weng
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:食品科學系研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:104
中文關鍵詞:蜂房抗菌抗氧化蜂蜜酒
外文關鍵詞:Nidus VespaeAntibacterialAntioxidationMead
相關次數:
  • 被引用被引用:3
  • 點閱點閱:275
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
蜂房乃蜂蜜之儲存地,而蜂房除了可貯蜜外,也可生用或炮製後當藥材使用,蜂房萃取物對抑制齲齒和惡性腫瘤有一定療效,為具有發展前景的中藥之一。
本研究先探討以不同溶劑萃取蜂房,並將所得之萃取液應用於抑制四種常見的食品中毒菌 (Staphylococcus aureus、Bacillus cereus、Escherichia
coli 及Enterobacter aerogenes) 上,同時也將萃取液以高效液相層析儀結合光電二極體陣列偵測器 (High-performance liquid chromatograph coupled with photodiode array detector, HPLC/PDA) 分析其酚酸及類黃酮成分。另一方面,將蜂蜜以水稀釋至24°Brix,接種三混合菌酛
(Saccharomyces cerevisiae BCRC22581 + S. cerevisiae BCRC21822+ S.cerevisiae BCRC21823),並添加營養劑 (磷酸二氫銨及尿素),於25℃下進行發酵35 天後,過濾所得之澄清蜂蜜酒液,放入蜂房浸漬,並比較以蜂蜜酒、市售米酒和15 %酒精三種不同基底浸漬所得之酒液其抗氧化特性。
熟成期間,分別取各浸漬酒液並檢測其理化特性 (可溶性固形物、pH 值、可滴定酸度、酒精度和色澤)、抗氧化成分 (總酚含量和類黃酮含量) 及抗氧化能力 (清除DPPH 自由基能力和還原力)。
蜂房萃取物抗菌試驗方面,以水萃物的抗菌效果最差,乙酸乙酯萃取物的抗菌效果最佳,其最低抑菌濃度 (Minimum inhibitory concentration,
MIC) 為1.5~2.0 mg/mL,最低殺菌濃度 (Minimum bactericidal
concentration, MBC) 為3.0~6.0 mg/mL,且乙酸乙酯萃取物不論革蘭氏陽
性菌或革蘭氏陰性菌均有抑制作用。
而經由高效液相層析儀結合光電二極體陣列偵測器分析,不同溶劑之蜂房萃取物皆含有氯原酸及鞣花酸,其中以甲醇萃取物所萃得的成分最多,含有氯原酸 (Chlorogenic acid)、鞣花酸 (Ellagic acid)、楊梅樹皮素
(Myricetin)、大豆素 (Daidzein)、槲黃素 (Quercetin)、桔皮素 (Hesperetin)及山奈酚 (Kaempferol) 七種。
蜂蜜酒可溶性固形物於熟成期間,除了未浸漬蜂房的蜂蜜酒之外,其它三種浸漬酒之可溶性固形物皆有略顯上升,其pH 值、可滴定酸度及酒精度則維持穩定或略微上升。
除了蜂蜜酒以外,其他三種蜂房再製酒之於熟成期間L 值和b 值會隨著時間增加而上升,而蜂蜜酒a 值則隨時間增加而下降。而所有蜂房再製酒於熟成五個月後,其抗氧化成分含量最高,且其抗氧化能力也較佳。而未浸漬蜂房的蜂蜜酒,其抗氧化成分與抗氧化能力則於熟陳二至三個月有最大值。
綜合本實驗可知,蜂房為一良好的天然抗菌及抗氧化物質。
Nidus Vespae is the place for bees to store honey. Nidus vespae can be used as a traditional Chinese medicine, and its extract also possesses antidental caries and antitumor properties.
In this study, Nidus Vespae was extracted with different solvents including water, 75% ethanol, 95% ethanol, methanol, ethyl acetate and n-hexane. The antimicrobial activity and contents of phenolic acids and flavonoids of extracts were analyzed. Staphylococcus aureus, Bacillus cereus, Escherichia coli and Enterobacter aerogenes were selected as the tested strains. Phenolic acids and
flavonoids were determined by using high-performance liquid chromatograph coupled with photodiode array detector.
The functional properties of honey wine macerated with Nidus Vespae were also investigated. The honey was diluted to 24°Brix and two fermentation supplements (ammonium phosphate monobasic and urea) were added. The alcoholic fermentation was conducted for 35 days with mixed culture of Saccharomyces cerevisiae BCRC22581, S. cerevisiae BCRC21822 and S. cerevisiae BCRC21823. The honey wine, commercial rice wine and 15% ethanol were macerated with Nidus Vespae for six months, and the physiochemical characteristics (total soluble solids, pH value, titratable acidity, ethanol, methanol and color) as well as functional properties (DPPH free radical scavenging activity and reducing power) were determined periodically.
While the water extracts showed the lowest antimicrobial activity, the extracts of ethyl acetate exerted the best antibacterial activities. The minimal inhibitory concentrations (MIC) and minimum bactericidal concentrations
(MBC) of ethyl acetate extracts were between 1.5~2.0 mg/mL and 3.0~6.0 mg/mL, respectively.
The results showed that chlorogenic acid and ellagic acid were present in all types of Nidus Vespae extracts. Seven phenolic compounds, including chlorogenic acid, ellagic acid, myricetin, daidzein, quercetin, hesperetin and
kaempferol, were detected in methanol extracts.
During the 6-month aging period, total soluble solids of macerated wines were increased. The ethanol content, pH value and titratable acidity did not change significantly during the aging period.While the L and b values of mead did not change during the aging period, L and b values of macerated wines slightly increased as time increased. On the
other hand, while the a value of macerated wines was kept stable, the a value of mead decreased moderately. In the fifth month of aging, all of the macerated wines showed the highest antioxidant contents and better antioxidant activities.
However, the highest antioxdant properties of mead were detected in the third month of aging. Collectively, Nidus Vespae possess the potential to serve as the natural
source of antimicrobial agents and antioxidants.
目錄..................................................... i
表目錄.................................................. iii
圖目錄................................................... iv
中文摘要................................................. vi
Abstract.............................................. viii
前言...................................................... 1
文獻回顧................................................... 3
一、蜂蜜與蜂房.............................................................................................. 3
(一) 蜂蜜與蜂房介紹................................................................................. 3
(二) 蜂蜜與蜂房分布及其產量.................................................................. 4
(三) 蜂房種類............................................................................................. 4
(四) 蜂房組成分及其功能性...................................................................... 4
二、天然物萃取.............................................................................................. 8
(一) 萃取定義............................................................................................. 8
(二) 常用天然物萃取溶劑.......................................................................... 8
(三) 天然物常見萃取方法.......................................................................... 8
三、再製酒介紹............................................................................................ 15
(一) 再製酒定義....................................................................................... 15
(二) 再製酒種類....................................................................................... 15
(三) 再製酒製法....................................................................................... 15
四、抗氧化................................................................................................... 16
(一) 自由基與活性氧............................................................................... 16
(二) 抗氧化劑作用原理............................................................................ 16
(三) 抗氧化劑類型................................................................................... 17
實驗架構....................................................................................................... 21
材料與方法................................................................................................... 27
一、實驗材料................................................................................................ 28
二、儀器設備................................................................................................ 30
三、實驗方法................................................................................................ 31
(一) 蜂房一般成分分析............................................................................ 31
(二) 蜂房萃取物抗菌試驗........................................................................ 32
(三) HPLC 分析不同溶劑之蜂房萃取物成分.......................................... 33
(四) 蜂蜜酒菌種篩選............................................................................... 34
(五) 蜂蜜酒營養劑篩選............................................................................ 35
(六) 蜂蜜酒熟成....................................................................................... 35
(七) 蜂蜜酒理化特性分析........................................................................ 36
(八) 抗氧化成分分析............................................................................... 37
(九) 抗氧化能力分析............................................................................... 37
(十) 統計分析........................................................................................... 38
結果與討論................................................................................................... 38
一、蜂房一般成分分析................................................................................ 38
二、蜂房萃取物抗菌試驗............................................................................ 39
三、HPLC 分析不同溶劑之蜂房萃取物其成分.......................................... 40
四、蜂蜜酒菌種篩選.................................................................................... 40
五、蜂蜜酒營養劑篩選................................................................................ 41
六、蜂蜜酒於發酵期間理化特性分析及其變化......................................... 42
七、蜂蜜酒於發酵期間抗氧化成分與抗氧化能力分析及其變化.............. 43
八、蜂房再製酒於熟成期間理化特性分析及其變化.................................. 43
九、蜂房再製酒於熟成期間抗氧化成分分析與抗氧化能力分析.............. 44
結論............................................................................................................... 45
參考文獻....................................................................................................... 90

王貞鈞,2008。高壓均質處理對桑椹酒液及其釀造醋品質之影響。國立嘉義大學食品科學研究所碩士論文,嘉義,台灣。
王傳、趙慶春、安曄、史國兵、郭濤、吳立軍,2008。中藥蜂房的化學成分研究。中國藥物化學雜誌,18: 54-57。
左渝陵,2005。天然藥物防齲的物質基礎研究-蜂房。四川大學口腔醫學系博士論文,四川,中國。
行政院農委會,2009,農業統計年報。
江華洲,2001。荔枝浸漬酒成分與色澤變化之探討。國立台灣大學食品科技研究所碩士論文,台北,台灣。
何皇滸,2005。蜂蜜酒釀造之研究。輔仁大學食品科學系研究所碩士論文,台北,台灣。
吳登楨,2005。如何辨別蜂蜜的真假好壞。苗栗區農業專訊,30: 19-23。
吳登楨、吳添金,1999a。蜂蜜酒發酵釀製之研究。苗栗區農業專訊,11: 6。
吳登楨、吳添金,1999b。結晶蜜與蜂蜜酒之加工。苗栗區農業專訊,11: 14-15。
李水盛、黃村能,2001。中草藥現代化之我思、我見、我聞。生物醫學報導,7 : 5-7。
李桂圓,2005。桑椹酒發酵與熟成期間抗氧化活性及香氣成份變化之探討。國立嘉義大學食品科學研究所碩士論文,嘉義,台灣。
洪千恵,2004。食用菇酪胺酸酶抑制活性與其抗氧化性質之探討。國立嘉義大學食品科學研究所碩士論文,嘉義,台灣。
胡鳳授,1991。水果再製酒類之製造製酒科技專論彙編,13:1-7。
梁佑慎,2004。市售新鮮蔬果抗氧化力之研究。國立屏東科技大學熱帶農業暨國際合作研究所碩士論文,屏東,台灣。
曹碧鳳,2002。蜂蜜真偽之鑑定及其品質之評估。國立屏東科技大學食品科學系碩士論文,屏東,台灣。
章允莊,2008。石蓮花保健飲品開發及其抗氧化能力探討。國立嘉義大學食品科學研究所碩士論文,嘉義,台灣。
莊攸禎,2003。藥酒製備及其抗氧化特性與儲存安定性之探討。國立嘉義大學。食品科學研究所碩士論文,嘉義,台灣。
郭文誠,2009。蜂富你的人生。中國藥訊,14(2):6-9。
陳碧秀,2009。迷迭香或柑濃素添加對重組牛肉片於冷藏期間品質之影響。國立嘉義大學動物科學研究所碩士論文,嘉義,台灣。
黃村能,2001。認識利口酒。農友月刊,10:30-36。
黃貴琳,2009。不同乾燥處理方法對香椿葉抗氧化能力及揮發性成分之影響。國立嘉義大學食品科學暨生物藥學研究所碩士論文,嘉義,台灣。
葛鳳晨,2002。蜂膠蜂巢蜂蠟療法。吉林科學技術出版社,pp. 10-11。
葛鳳晨,2005。蜂產品療法叢書蜂巢蜂蠟奇方。吉林科學技術出版社,pp. 2-3。
AOAC. 2006. Official Method of Analysis. Association of Official Analytical Chemists. Gaithersburg, Maryland, U.S.A.
Arnao, M. B., Cano, A. and Acosta, M. 2001. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chemistry. 73: 239-244.
Boulton R. B., Singleton V. L., Bisson L. F. and Kundee R. E. 1996. Principles and Practices of Winemaking. Champman & Hall, New York.
Cook, N.C. and Samman, S. 1996. Flavonoids chemistry metabolism cardioprotective effect and dietary sources. The Journal of Nutritional Biochemistry. 7: 66-76.
Duarte, S., Rosalen, P. L., Hayacibara, M. F., Cury, J. A., Bowen, W. H. and Marquis, R. E. 2006. The influence of a novel propolis on mutans streptococci biofilms and caries development in rats. Archives of Oral Biology. 51: 15–22.
Gende, L. B., Floris, I., Firtz, R. and Eguaras, M. J. 2008. Antimicrobial activity of cinnamon (Cinnamomum zeylanicum) essential oil and its main components against Paenibacillus larvae from Argentine. Bulletin of Insectology. 61(1): 1-4.
Jia, Z., Tang, M. and Wu, J. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry. 64: 555-559.
Kahoun D., Rezková S., Veškrnová K., Královsky´ J. and Holčapek M. 2008. Determination of phenolic compounds and hydroxymethylfurfural in meads using high performance liquid chromatography with coulometric-array and UV detection. Journal of Chromatography A. 1202: 19-33.
Kahoun, D., Řezková, S., Veškrnová, K., Královsky, J. and Holčapek, M. 2008. Determination of phenolic compounds and hydroxymethylfurfural in meads using high performance liquid chromatography with coulometric-array and UV detection. Journal of Chromatography A, 1202: 19-33.
Karsha, P. V. and Lakshmi, O. B. 2010. Antibacterial activity of black pepper (Pipernigrum Linn.) with special reference to its mode of action on bacteria. Indian Journal of Natural Products and Resources. 1(2): 213-215.
Lai, P., Li, K. Y., Lu, S. and Chen, H. H. 2009. Phytochemicals and antioxidant properties of solvent extracts from Japonica rice bran. Food Chemistry. 117: 538-544.
Matsushige K., Kusumoto I. T., Yamamoto Y., Kadota S. and Namba T. 1995. Quality evaluation of propolis. A comparative study on radical scavenging effects of propolis and Vespae Nidus, Journal of Traditional Medicines. 12: 45-53.
Oyaizu M. 1986. Studies on products of browning reaction: Antioxidative activities of products of browning reaction prepared from glucosamine. Japanese Journal of Nutrition. 44: 307-315.
Pereira, A.P., Dias, T., Andrade, J., Ramalhosa, E., Estevinho, L.M. 2009 Mead production: Selection and characterization assays of Saccharomyces cerevisiae strains. Food and Chemical Toxicology. 47: 2057-2063.
Pyrzynska K. and Biesaga M., 2009. Analysis of phenolic acids and flavonoids in honey. Trends in Analytical Chemistry. 28(7): 893-902.
Shimada, K., Fujikawa, K., Yahara, K. and Nakamura, T. 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cycodextrin emulsion. Journal of Agricultural and Food Chemistry. 40: 945-948.
Singleton V. L. and Jr J. A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagent. American Journal of Enology and Viticulture. 16: 144-153.
USDA. 1985. United States Standards for Grades of Extracted Honey. U.S.A.
Valachovic, P., Pechova, A. and Mason, T. J. 2001. Towards the industrial production of medicinal tincture by ultrasound-assisted extraction. Ultrasonics Sonochemistry. 8:111-117.
Vinatoru, M. 2001. An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrasonics Sonochemistry. 8: 303-313.
Wang, Y. C., Hsu, H. W. and Liao, W. L. 2008. Antibacterial activity of Melastoma candidum. Food Science and Technology. 41: 1793-1798.
William W. B., Cuvelier M. E. and Berset C. 1995. Use of free radical method to evaluate antioxidant activity. Food Science and Technology. 28: 25-30.
Xiao, J., Liu Y., Zuo Y. L., Li. J. Y., Ye, L. and Zhou. X. D. 2006. Effects of Nidus Vespae extract and chemical fractions on the growth and acidogenicity of oral microorganisms. Archives of Oral Biology. 51: 804–813.
Xiao, J., Liu Y, Zuo Y. L., Li. J. Y., Ye, L. and Zhou. X. D. 2007a. Effects of Nidus Vespae extract and chemical fractions on glucosyltransferases, adherence and biofilm formation of Streptococcus mutans. Archives of Oral Biology. 52: 869–875.
Xiao, J., Zhou, X. D., Feng, J., Hao, Y. Q. and Li, J. Y. 2007b. Activity of Nidus Verpae extract and chemical fractions against Streptococcus mutans biofilms. Letters in Applied Microbiology. 45: 547-552.
Yao, L., Datta N., Toma´s-Barbera´n F. A., Ferreres F., Martos I. and Singanusong R.. 2002. Flavonoids, phenolic acids and abscisic acid in Australian and New Zealand Leptospermum honeys. Food Chemistry. 81: 159-168.
Yao, L., Jiang Y., Singanusong R., Datta N. and Raymont K., 2003. Phenolic acids and abscisic acid in Australian Eucalyptus honeys and their potential for floral authentication. Food Chemistry. 86: 169-177.
Yaoa, L., Jiang Y., Singanusong R., Datta N. and Raymont K., 2005. Phenolic acids in Australian Melaleuca, Guioa, Lophostemon, Banksia and Helianthus honeys and their potential for floral authentication. Food Chemistry. 38: 651-658.
Zhou, K., Su, L. and Yu, L. L. 2004. Phytochemicals and antioxidant properties in wheat bran. Journal of Agricultural and Food Chemistry. 52: 6108-6114.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔