(34.204.186.91) 您好!臺灣時間:2021/04/19 15:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴奕瑄
研究生(外文):Yi-Syuan Lai
論文名稱:樹豆機能性及其納豆產品之開發
論文名稱(外文):The functional properties and its natto product development of Cajanus cajan L.
指導教授:吳思敬
指導教授(外文):She-Ching Wu
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:食品科學系研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:165
中文關鍵詞:樹豆花青素抗氧化抗發炎納豆納豆激酶保健食品
外文關鍵詞:Cajanus cajan L.AnthocyaninsAntioxidantAnti-inflammatoryNattoNattokinaseHealth food
相關次數:
  • 被引用被引用:5
  • 點閱點閱:942
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
樹豆 (Cajanus cajan Linn. Millsp.) 為豆科 (Leguminosae) 樹豆屬 (Cajanus),多年生矮灌木作物,具有調節血糖、抗菌、抗瘧疾等多種生理功效。納豆為日本傳統發酵食品,所含之納豆激酶 (Nattokinase) 可預防各種慢性疾病。本研究將樹豆以水、25% 及 50% 乙醇進行萃取,分析其抗氧化能力及活性成分。結果顯示,樹豆 50% 乙醇萃取物具最佳清除 DPPH 能力 (82.07%)、總抗氧化力 (0.66 μmol trolox)、還原力 (A700nm=1.56)、總酚 (13.16 mg/g)、類黃酮 (4.72 mg/g) 及花青素 (2.90 mg/g) 含量,由相關性分析結果顯示,花青素與抗氧化活性具高度正相關性 (r=0.762-0.993),並以 HPLC 分析出 cyanidin-3-monoglucoside (C-3-G) 及 peonidin-3-monoglucoside (P-3-G) 兩種花青素,分別含有 2.25 mg/g 及 0.54 mg/g。顯示樹豆 50% 乙醇萃取物具良好之抗氧化活性,並富含 C-3-G 及P-3-G 等活性成分。本研究進一步評估樹豆 50% 乙醇萃取物及其活性主成分 C-3-G 對 H2O2 誘導 RAW264.7 巨噬細胞氧化損傷之保護作用及抗發炎功效。結果顯示,添加樹豆 50% 乙醇萃取物,能顯著提升 H2O2 誘導組之細胞存活率、glutathione (GSH) 含量、superoxide dismutase (SOD)、glutathione peroxidase (GPx)、glutathione reductase (GRd) 及 catalase (CAT) 等抗氧化酵素活性,降低脂質過氧化及 DNA 損傷,並有效減低 LPS 誘導發炎激素 nitric oxide (NO)、prostaglandin E2 (PGE2)、tumor necrosis factor-alpha (TNF-α)、interleukin-1β (IL-1β) 及 interleukin-6 (IL-6) 之生成,此外,C-3-G 亦具有相似之保護效果。
樹納豆保健產品開發方面,本研究以樹豆為基質利用納豆菌 (Bacillus subtilis natto) 發酵製成樹納豆,結果顯示,樹豆以 Bacillus subtilis BCRC 14715,接種量 107 CFU/mL,於相對溼度 90%,35℃ 培養 32 小時之最適發酵條件下進行樹納豆產製,其納豆激酶活性可達到 53.5 FU/g。樹豆於發酵後其抗氧化活性顯著高於未發酵樹豆,亦具有抑制血管收縮素轉化酶之功效。安全性評估方面,並無造成細胞毒性及致突變性,且對直接致突變劑 NQNO 及間接致突變劑 AFB1 之抗致突變性分別為 28.9% 及 40.3%。
綜合上述,樹豆具良好抗氧化性,可藉由調節抗氧化防禦系統,保護細胞受到 H2O2 造成之氧化傷害,亦可抑制細胞發炎反應,且此保護作用可能來自於樹豆中花青素 C-3-G 所致。開發製成之樹納豆產品,為一安全且具保健機能性食品,可作為新型態保健產品開發之依據,進而提升其經濟價值,增添本土樹豆相關產品之多樣性。

Cajanus cajan L. Millsp. belongs to the leguminosae family and genus of Cajanus, perennial crops bush. It is used for blood glucose regulation, antibacterial and antipaludism. Natto is a traditional fermentation food in Japan, and demonstrated that nattokinase can be prevents chronic diseases. In this study, the Cajanus cajan L. was extracted by water、25% and 50 % ethanol. The antioxidative activities and active compounds of these extracts were determined. The 50% ethanolic extracts from Cajanus cajan L. showed the strongest DPPH scavenging ability (82.07%), total antioxidant capacity (0.66 μmol trolox), reducing power (A700nm=1.56), total phenolics (13.16 mg/g), flavonoids (4.72 mg/g) and anthocyanins (2.90 mg/g). By the correlation analysis showed that anthocyanin and antioxidant activity of a highly positive correlation (r=0.762-0.993), and its major active compounds assayed by HPLC were cyanidin-3-monoglucoside, C-3-G (2.25 mg/g) and peonidin-3-monoglucoside, P-3-G (0.54 mg/g). These results indicated that 50% ethanolic extracts showed excellent antioxidantive activity and rich in active compounds, such as C-3-G and P-3-G. To get insight into the underlying the protective effects of Cajanus cajan L. on oxidative damage and inflammation in RAW264.7 macrophages. The results show that co-treatment of the RAW264.7 macrophages with 50% ethanolic Cajanus cajan L. extracts could significantly enhance cell viability, GSH level and the activities of superoxide dismutase (SOD), glutatione peroxidase (GPx), glutathione reductase (GRd), catalase (CAT), and also inhibited H2O2 increased oxidative damage, lipid peroxidation and DNA damage. Cajanus cajan L. also can prevented the production of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-alpha (TNF-α), interleukin-1 (IL-1β) and interleukin-6 (IL-6) in LPS-stimulated RAW 264.7 macrophages. Interestingly, the results are similar to C-3-G which positive effect on the expression.
Furthermore, the innovation health food of Cajanus cajan L. natto, its optimal cultivation condition was inoculation of Bacillus subtilis BCRC 14715, 107 CFU / mL, 90% relative humidity at 35℃ for 32 hours, the nattokinase can reach 53.5 FU/g. In addition, the antioxidant activity of fermented Cajanus cajan L. higher than that of nonfermented Cajanus cajan L. After fermented also can enhance the ACE inhibitory activity. In safety evaluation, there was no toxicity or mutagenicity effect in prokaryotic system, and the suppressed mutagenicity activity for direct mutagen (4-nitroquinoline-N-oxide) or indirect mutagen (Aflatoxin B1), which respectively reached 28.9% and 40.3%.
In conclusion, Cajanus cajan L. has good antioxidative activities. It can enhance antioxidant enzymes, inhibited lipid peroxidation, DNA damage, and inflammatory cytokines formation. The protective effects might be associated with its active compounds, such as C-3-G. And the Cajanus cajan L. natto products was a safety and healthy functional foods. It can be beneficial for the development of functional product development, increase economic benefits, and enhance the variety of the relevant products of Cajanus cajan L..

目錄 I
圖次 III
表次 V
中文摘要 VI
英文摘要 VIII
前言 1
第一章、文獻回顧 2
一、樹豆 3
二、黑色食品與花青素 8
三、自由基與抗氧化防禦系統 13
四、發炎反應對癌化之影響 23
五、納豆 30
研究目的 39
第二章、樹豆之抗氧化及發炎功效評估 40
摘要 41
前言 42
實驗架構 43
材料與方法 45
結果與討論 58
一、樹豆之一般組成分分析 58
二、樹豆不同溶劑萃取物之萃取率 58
三、樹豆不同溶劑萃取物之抗氧化活性及成分 61
四、樹豆 50% 乙醇萃取物之抗氧化活性及抗氧化成分之相關性 69
五、樹豆 50% 乙醇萃取物之花青素定性及定量分析 69
六、樹豆 50% 乙醇萃取物及花青素對 H2O2 誘導 RAW264.7 巨噬細胞氧化損傷之細胞保護作用• 74
七、樹豆 50% 乙醇萃取物對脂多醣 (lipopolysaccharides, LPS) 誘導 RAW264.7 macrophages 發炎反應之影響 88
結論 99
第三章、樹納豆保健品之開發 100
摘要 101
前言 102
實驗架構 103
材料與方法 104
結果與討論 112
一、樹納豆之發酵條件與產製 112
二、樹納豆之一般組成分分析 120
三、樹納豆水萃物之萃取率 120
四、樹納豆萃取物之抗氧化活性及成分 120
五、樹納豆水萃物對血管收縮素轉化酵素抑制活性 131
六、樹納豆水萃物對 S. typhimurium TA98 與 TA100 之毒性及致突變性試驗 133
七、樹納豆水萃物之抗致突變性試驗 138
結論 140
總結論 141
參考文獻 142

江瑞拱。1999。多用途的資源植物~樹豆(上)。農業世界雜誌 188: 101-103。
余振興。2006。樹豆超臨界二氧化碳萃取物及其抗氧化性之研究。國立屏東科技大學食品科學系碩士論文。
吳彩平。2006。以固態發酵製備樟芝米及其品質與抗氧化性質。國立中興大學碩士論文。
阮鳴嫣。2008。Bacillus subtilis BCRC 14715 發酵黑豆萃取物之抗氧化活性及對血管收縮素轉化酶之抑制作用。國立台灣大學食品科技研究所碩士論文。
林勵、謝寧、程紫樺。1999。木豆黃酮類成分的研究。中國藥科大學學報30: 21-23。
姜金龍。1996。樹豆少量多樣化雜糧作物栽培手冊。台灣省政府農林廳。
許元勳。2003。現代生物科技的新寵兒-神奇納豆菌。生物產業 14: 73-78。
陳君婷。2004。以 Bacillus spp. 發酵蒸煮大豆探討其發酵期間納豆激酶活性與異黃酮含量變化之研究。國立嘉義大學食品科學研究所碩士論文。
陳迪華、李慧穎、林蕙。1985。木豆葉化學成分研究。中草藥 16: 434-439。
陳婷鈺。2002。鏈激酶突變種 (SKβK180A) 的蛋白結晶與鏈激酶/人類血纖維蛋白溶酶/酶原作用結構型之建立。國立台灣大學口腔生物科技學研究所碩士論文。
須見洋行。1993。 納豆治百病。培琳出版社,台北,台灣。
黃卓治、辛志勳、張文重。1977。納豆菌之研究 I 納豆菌培養條件之檢討。屏東農專學報 18: 69-75。
黃婷葳。2008。樹豆癒合組織之抗氧化能力及異黃酮含量分析。大同大學生物工程學系碩士論文。
廖哲逸。2003。納豆激酶之機能性。食品資訊 198: 66-71。
趙文婉。2001。數種食用豆類乙醇萃取物抗氧化性之研究。靜宜大學食品營養系碩士論文。
趙麗惠。2005。樹豆種子與細葉金午時花全草化學成分及生物活性之研究。屏東科技大學生物科技研究所碩士論文。
劉廷英、陳賢哲。1984。豆豉油及其抗氧化性。中國農業雜誌 22: 240-256。
蔡正宗、陳叔凰。1996。黑糯米中兩種主要花素苷之結構鑑定。食品科學23: 444-452。
Abidi, S.L. 2001. Chromatographic analysis of plant sterols in food and vegetable oils. J Chromatogr A. 935: 173-201.
Aebi, H. 1984. Catalase in vitro. Methods Enzymol. 105: 121-126.
Akihisa, T., Nishimura, Y., Nakamura, N., Roy, K. and Ghosh, P. 1992. Sterols of Cajanus cajan and three other leguminose seed. Phytochemistry. 31: 1765-1768.
Akojie, F.O.B. and Fung, L.W.M. 1992. Antisickling activity of hydroxybenzonic acid in Cajanus cajan. Planta Med. 58: 317-320.
Amalraj, T. and Ignacimuthu, S. 1998. Hypoglycemic activity of Cajanus cajan (seeds) in mice. Indian J Exp Biol. 36: 1032-1033.
Ames, B.N., McCann, J. and Yamasaki, E. 1975. Methods for detecting carcinogens and mutagens with the Salmonella/mammali an microsome mutagenicity test. Mutat. Res. 31: 347-364.
AOAC. 1990.The official methods of analysis of the association of official analytical chemists. (15th ed.) The Association of Official Analytical Chemists, Arlington,VA, USA.
Apte, R.N., Krelin, Y., Song, X., Dotan, S., Recih, E., Elkabets, M., Carmi, Y., Dvorkin, T., White, R.M., Gayvoronsky, L., Segal, S. and Voronov, E. 2006. Effects of micro-environment- and malignant cell-derived interleukin-1 in carcinogenesis, tumour invasiveness and tumour-host interactions. Eur J Cancer. 42:751-759.
Azevedo, L., Gomes, J.C., Stringheta, P.C., Gontijo, A.M., Padovani, C.R., Ribeiro, L.R. and Salvadori, D.M. 2003. Black bean (Phaseolus vulgaris L.) as a protective agent against DNA damage in mice. Food Chem Toxicol. 41: 1671-1676.
Bagchi, D., Bagchi, M., Stohs, S.J., Das, D.K., Ray, S.D., Kuszynski, C.A., Joshi, S.S. and Pruess, H.G. 2000. Free radicals and grape seed proanthocyanidin extract: importance in human health and disease prevention. Toxicology. 148: 187-197.
Barnes, P.J. and Karin, M. 1997. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med. 336: 1066-1071.
Beckman, J.S. and Koppenol, W.H. 1996. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol. 271: C1424-1437.
Bellomo, G., Mirabelli, F. Dimonte, D., Richelmi, P., Thor, H., Orrenius, C. and Orrenius, S. 1987. Formation and reduction of glutathione-mixed disulfides during oxidative stress. Biochem Pharmacol. 36: 1313-1320.
Berghofer, E., Grzeskowiad, B., Mundigler, N., Sentall, W.B. and Walcak, J. 1998. Antioxidative properties of faba bean-, soybean- and oat tempeh. Int J Food Sci Nutr. 49: 45-54.
Berliner, J.A. and Heinecke, J.W. 1996. The role of oxidized lipoproteins in atherogenesis. Free Radic Biol Med. 20: 707-727.
Bohr, V., Anson, R.M., Mazur, S. and Dianov, G. 1998. Oxidative DNA damage processing and change with aging. Toxicol Lett. 102-103: 47-52.
Boolbol, S.K., Dannenberg, A.J., Chadburn, A., Matucci, C., Guo, X.J., Ramonetti, J.T., Abreu, G.M., Newmark, H.L., Lipkin, M.L., DeCosse, J.J. and Bertagnolli, M.M. 1996. Cyclooxygenase-2 overexpression and tumor formation are blocked by sulindac in a murine model of familial adenomatous polyposis. Cancer Res. 56: 2556-2560.
Brand-Williams, W., Cuvelier, M.E. and Berset, C. 1995. Use of a free radical methos to evaluate antioxidant activity. Lebenson Wiss Technol. 28: 25-30.
Cadena, S., and Cadena, A.M. 2002. Fighting the stranger antioxidant protection against endotoxin toxicity. Toxicology. 180: 45-63.
Cadenas, E. 1995. Mechanisms of oxygen activation and reactive oxygen species detoxification. In “Oxidative Stress and Antioxidant Defenses in Biology.” Ahmad, S. Chapman and Hall, Eds., International Thomaon Publishing Inc., New York. pp. 1-25.
Calder, P.C. 2007. Immunomodulation by omega-3 fatty acids. Prostaglandins Leukot Essent Fatty Acids. 77: 327-335.
Caroff, M., Karibian, D., Cavaillon, J.M. and Haeffner-Cavaillon, N. 2002. Structural and functional analyses of bacterial lipopolysaccharides. Microbes Infect. 4: 915-926.
Castelluccio, C., Paganga, G., Melikian, N., Bolwell, G. P., Pridham, J., Sampson, J. and Rice-Evans, C. 1995. Antioxidant potential of intermediates in phenylpropanoid metabolism in higher plants. FEBS Lett. 368: 188-192.
Chang, C.C., Yang, M.H., Wen, H.M. and Chern, J.C. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food and Drug Ana. 10: 178-182.
Chen, C.C., Yi-Tao, S., Jun-Jie, C., and Kuo-Tung, C. 2000. TNF-α-induced cycloxygenase-2 expression in human lung epithelail cels: Involvement of the phospholipase C-γ2, protein kinase C-α, tyrosine kinase, NF-κB-inducing kinase, and I-κB kinase 1/2 pathway. J Immunol. 165: 2719-2728.
Chen, P.N., Chu, S.C., Chiou, H.L., Chiang, C.L., Yang S.F., and Hsieh, Y.S. 2005. Cyanidin 3-glucoside and peonidin 3-glucoside inhibit tumor cell growth and induce apoptosis in vitro and suppress tumor growth in vivo. Nutr Cancer. 53: 232-243
Cheng, K. C., Cahill, D. S., Kasai, H., Nishimura, S. and Loeb. L. A. 1992. 8-hydroxyguanine, an abundant form of oxidative DNA damage, causes GT and AC substitution. J. Biol. Chem. 267: 166-172.
Chi, D.S., Qui, M., Krishnaswamy, G., Li, C., and Stone W. 2003. Regulation of nitric oxide production from macrophages by lipoplysaccharide and catecholamines. Nitric oxide. 8:127-132.
Chiang, A.N., Wu, H.L., Yeh, H.I., Chu, C.S., Lin, H.C. and Lee, W.C. 2006. Antioxidant effects of black rice extract through the induction of superoxide dismutase and catalase activities. Lipids. 41: 797-803.
Chien, C.T., Lee, P.H., Chen, C.F., Ma, M.C., Lai, M.K. and Hsu, S.M. 2001. Denovo demonstration and co-localization of free-radical production and apoptosisformation in rat kidney subjected to ischemia/reperfusion. J Am Soc Nephrol. 12: 973-982.
Chien, J.T., Hsieh, H.C., Kao, T.H. and Chen, B.H. 2005. Kinetic model for studying the conversion and degradation of isoflavones during heating. Food Chem. 91: 425-434.
Chou, S.T., Chang, C.T., Chao, W.W. and Chung, Y.C. 2002. Evaluation of antioxidative and mutagenic properties of 50% ethanolic extract from red bean fermented by Aspergillus oryzae. J Food Prot. 65: 1463-1469.
Choung, M.G., Baek, I.Y., Kang, S.T., Han, W.Y., Shin, D.C., Moon, H.P. and Kang, K.H. 2001. Isolation and determination of anthocyanins in seed coats of black soybean (Glycine max (L.) Merr.) J Agric Food Chem. 49: 5848-5851.
Chung, Y.C., Chang, C.T., Chao, W.W., Lin, C.F. and Chou, S.T. 2002. Antioxidative activity and safety of the 50% ethanolic extract from red bean fermented by bacillus subtilis IMR-NK1. J Agric Food Chem. 50: 2454-2458.
Cooksey, C.J., Dahiya, J.S., Garratt, P.J. and Strange, R.N. 1980. Two novel stil bene-2-carboxylicacid phytoalexins from Cajanus cajan. Phytochemistry. 21:2935-2938.
Cushman, D.W. and Cheung H.S. 1971. Spectrometric assay and properties of angiotensin-converting enzyme of rabbit lung. Biochem Pharmacol. 20: 1637-1648.
Dahiya, J.S., Strange, R.N., Bilyard, K.G., Cooksey, C.J. and Garratt, P.J. 1984. Two isoprenylated isoflavone phytoalexins from Cajanus cajan. Phytochemistry. 23: 871-874.
Dahlöf, B., Devereux, R., de Faire, U., Fyhrquist, F., Hedner, T., Ibsen, H., Julius, S., Kjeldsen, S., Kristianson, K., Lederballe-Pedersen, O., Lindholm, L.H., Nieminen, M.S., Omvik, P., Oparil, S. and Wedel, H. 1997. The losartan intervention for endpoint reduction (LIFE) in hypertension study: rationale, design, and methods. The LIFE Study Group. Am J Hypertens. 10: 705-713.
De Mejia, E.G., Castano-Tostado, E. and Loarca-Pina, G. 1999. Antimutagenic effects of natural phenolic compounds in beans. Mutat Res. 441: 1-9.
Dipti, K.P., Sharma, S.K., Sairam, M., Ilavazhagan, G., Sawhney, R.C. and Banerjee, P.K. 2006. Protective Effect of Polysaccharide Fractions from Radix A. Sinensis against tert-Butylhydroperoxide Induced Oxidative Injury in Murine Peritoneal Macrophages. Food chem Toxicol. 44: 1024-1030.
Dirsch, V.M., Stuppner, H. and Vollmar, A.M. 1998. The Griess assay: suitable for a bio-guided fractionation of anti-inflammatory plant extracts? Planta Med. 64: 423-426.
Duker-Eshun, G., Jaroszewski, J.A., Asomaning, W.A., Oppong-Boachie, F. and Christensen, S.B. 2004. Antiplasmodial constituents of Cajanus cajan. Phytother Res. 18: 128-130.
Duthie, S.J., Collins, A.R., Duthie, G.G. and Dobson, V.L. 1997. Quercetin and myricetin against hydrogen peroxide-induced DNA damage (strand breaks and oxidised pyrimidines) in human lymphocytes. Mutat Res. 393: 223-231.
Duthie, S.J., Gardner, P.T., Morrice, P.C., Wood, S.G., Pirie, L., Bestwick, C.C., Milne, L. and Duthie, G.G. 2005. DNA stability and lipid peroxidation in vitamin E-deficient rats in vivo and colon cells in vitro. Eur J Nutr. 44: 195-203
Ekeke, G.I. and Shode, F.O. 1985. The reversion of sickled cells by Cajanus cajan. Planta Med. 12: 504-507.
Erridge, C., Bennett-Guerrero, E. and Poxton, I.R. 2002. Structure and function of lipopolysaccharides. Microbes Infect. 4: 837-851.
Esaki, H., Onozaki, H. and Osawa, T. 1994. Antioxidative activity of fermented soybeen products. ACS Symposium Series. 546: 353-60.
Esposito-Avella, M., Diaz, A., de Gracia, I., de Tello, R. and Gupta, M.P. 1991. Evaluation of traditional medicine: effects of Cajanus cajan L. and of Cassia fistula L. on carbohydrate metabolism in mice. Rev Med Panama. 16: 39-45.
Esterbauer, H. and Cheeseman, K. 1990. Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol. 186: 407-421.
Fenech, M., Stockley, C. and Aitken, C. 1997. Moderate wine consumption protects against hydrogen peroxide-induced DNA damage. Mutagenesis. 12: 289-296.
Fernandez-orozco, R., Frias, J., Muñoz, R., Zielinski, H., Piskula, M. K., Kozlowska, H. and Vidal-valverde, C. 2007. Fermentation as a bio-process to obtain functional soybean flours. J Agric. Food Chem. 55: 8972-8979.
Fosslien, E. 2000. Molecular pathology of cyclooxygenase-2 in neoplasia. Ann Clin Lab Sci. 30: 3-21.
Fujita, M., Nomura, K., Hong, K., Ito, Y., Asada, A. and Nishimuro, S. 1993. Purification and characterization of a strong fibrinolytic enzyme (nattokinase) in the vegetable cheese natto, a popular soybean fermented food in Japan. Biochem Biophys Res Commun. 197: 1340-1347.
Fukushima, D. 1986. Soy sauce and other fermented foods of Japan. In: Mycologia Memoir. APS Press, Nr 11, St Paul, MN. pp.121-149.
Fuleki T. and Francis F.J. 1968b. Quantitative methods for anthocyanins. Determination of total anthocyanin and degradation index for cranberry juice. J Food Sci. 33: 78-83.
Fuleki, T. and Francis, F.J. 1968a. Quantitative methods for anthocyanins. Extraction and determination of total anthocyanin in cranberries. J Food Sci. 33: 72-77.
Furuta, S., Takahashi, M., Takahata, Y., Nishiba, Y., Oki, T., Masuda, M., Kobayashi, M. and Suda, I. 2003. Radical-scavenging activites of soybean cultivars with black seed coats. Food Sci Technol Res. 9: 73-75.
Galvano, G. 2004. Cyanidins: metabolism and biological properties. J Nutr Biochem. 15: 2-11.
Ganiyu, O. 2006. Antioxidant properties of some commonly consumed and underutilized tropical legumes. Eur Food Res Technol. 224: 61-65.
Glauser, M.P., Heumann, D., Baumgartner, J.D. and Cohen, J. 1994. Pathogenesis and potential strategies for prevention and treatment of septic shock: an update. Clin Infect Dis. 18: S205-216.
Gordon, M.F. 1990. The mechanism of antioxidant action in vitro. In B. J. F. Hudson (Ed.), Food Antioxidants. London: Elsevier Applied Science, pp. 1-18.
Goyert, S.M., Ferrero, E., Retting, W.J., Yenamandra, A.K., Obata, F. and Le Beau, M.M. 1988. The CD14 monocyte differentiation antigen maps to a region encoding growth factors and receptor. Science. 239: 497-500.
Graziewicz, M., Wink, D.A. and Laval, F. 1996. Nitric oxide inhibit DNA ligase activity: potential mechanisms for NO-mediated DNA damage. Carcinogenesis. 17: 2501-2505.
Guha, M. and Mackman, N. 2001. LPS induction of gene expression in human monocytes. Cell Singal. 13: 85-94.
Gutteridge, J.M.C. and Halliwell, B. 1990. The measurement and mechanism of lipid peroxidation in biological systems. Trends Biochem Sci. 15: 129-135.
Halliwell, B., Murcia, M.A., Chirico, S. and Aruoma, O.I. 1995. Free radicals and antioxidants in food and in vivo: what they do and how they work. Crit Rev Food Sci Nutr. 35: 7-20.
Han, H. and Baik, B.K. 2008. Antioxidant activity and phenolic content of lentils (Lens culinaris), chickpeas (Cicer arietinum L.), peas (Pisum sativum L.) and soybeans (Glycine max), and their quantitative changes during processing. Food Sci Technol. 43: 1971-1978.
Hanada, T. and Yoshimura, A. 2002. Regulation of cytokine signaling and inflammation. Cytokine Growth Factor Rev. 13: 413-421.
Hayashi, U., Nagao, K., Tosa, Y. and Yoshioka, Y. 1977. Natto no Eiyoka ni Kansuru Jikkenteki Kenkyu. Natto Kagaku Kenkyu Kaishi. 1: 85-93.
Hon, K.L., Leung, C.W. and Cheng, W.T. 2003. Clinical presentations and outcome of severe acute respiratory syndrome in children. Lancet. 361: 1701-1703.
Hoozemans, J.J., Veerhuis, R., Rozemuller, A.J., Arendt, T., Eikelenboom, P. 2004. Neuronal COX-2 expression and phosphorylation of pRb precede p38 MAPK activation and neurofibrillary changes in AD temporal cortex. Neurobiol Dis. 15: 492-499.
Hopp, D.C. and Inman, W.D. 2003. Compositions containing hypoglycemically active stilbenoids. US Patent 6552085.
Hour, T.H., Liang, Y.C., Chu, I.S. and Lin, J.K. 1999. Inhibition of eleven mutagens by various tea extracts, (-) epigallocatechin-3-gallate, gallic acid and caffeine. Food Chem Toxicol. 37: 569-579.
Hu, C., Zawistowski, J., Ling, W. and Kitts, D.D. 2003. Black rice (Oryza sativa L. indica) pigment fraction suppresses both reactive oxygen species and nitric oxide in chemical and biological model systems. J Agric Food Chem. 51: 5271-5277.
Hu, M.L. 1994. Measurement of protein thiol groups and glutathione in plasma. Methods Enzymol. 233: 380-385.
Hu, W.H., Johnson, H. and Shu, H.B. 1999. Tumor necrosis factor-related apoptosis-inducing ligand receptors signal NF-kappaB and JNK activation and apoptosis through distinct pathways. J Biol Chem. 274: 30603-30610.
Huang, W.C., Jun-Jie, C., Hiroyasu, I., and Ching-Chow, C. 2003. Tyrosine phosphorylation of I-κB kinase α/β by protein kinase C-dependent c-Src activation is involved in TNF-α induced cyclooxygenase-2 expression. J Immunol. 170: 4767-4775.
Igarashi, K., Yoshida, T. and Suzuki, E. 1993. Antioxidative activity of Nasunin in Chouja-nasu (Little Eggplant Solanum Melongena L. ‘Chouja’) Nippon Shokuhin Kogyo Gakkaishi. 40: 138.
Ignarro, L.J. 1999. Nitric oxide: a unique endogenous signaling molecule in vascular biology. Biosci. Rep. 19: 51-71.
Ingham, J.L. 1976. Induced isoflavonoids from fungus-infected stems of pigeon pea (Cajanus cajan). Z Naturforsch C. 31: 504-508.
Iwai, K., Nakaya, N., Kawasaki, Y. and Matsue, H. 2002. Inhibitory effect of natto, a kind of fermented soybeans, on LDL oxidation in vitro. J Agric Food Chem. 50: 3592-3596.
Iwu, M.M., Igboko, A.O., Onwubiko, H. and Ndu, U.E. 1988. Effect of cajaminose from Cajanus cajan on gelation and oxygen affinity of sickle cell haemoglobin. J Ethnopharmacol. 23: 99-104.
Jacob, H.A. 1995. The integrated antioxidant system. Nutr. Res. 15: 755-766.
Jadon, A., Bhadauria, M. and Shukla, S. 2007. Protective effect of Terminalia belerica Roxb. and gallic acid against carbon tetrachloride induced damage in albino rats. J Ethnopharmacol. 109: 214-218.
Japan Vio Laboratory Co., Ltd. 1997. Assay method of nattokinase.
Jones, D.P., Brown, L.A.S. and Sternberg, P. 1995. Variability in glutathione-dependent detoxication in vivo and its relevance to detoxication of chemical mixtures. Toxicology. 105: 267-274.
Kader, F., Rovel, B., Girardin, M. and Metche, M. 1996. Fractionation and identification of the phenolic compounds of highbush blueberries (Vaccinium corymbosum, L.). Food Chem. 55: 35-40.
Kang, S.Y., Seeram, N.P., Nair, M.G. and Bourquin, L.D. 2003. Tart cherry anthocyanins inhibit tumor development in ApcMin mice and reduce proliferation of human colon cancer cells. Cancer Lett. 194: 13-19.
Karim, S., Habib, A., Levy-Toledano, S. and Maclouf, J. 1996. Cyclooxygenase-1 and -2 of endothelial cells utilize exogenous or endogenous arachidonic acid for transcellular production of thromboxane. J Biol Chem. 271: 12042-12048.
Katsube, N., Iwashita, K., Tsushida, T., Yamaki, K. and Kobori, M.I. 2003. Induction of apoptosis in cancer cells by bilberry (Vaccinium myrtillus) and the anthocyanins. J Agric Food Chem. 51: 68-75.
Kiers, J. L. 2000. In Vitro digestibility of Bacillus fermented soya bean. Int J food microbial. 60: 163-169.
Kim, S. and Yamamoto, K. 1992. The in vivo role of rennin-angiotensin system. Cell Sci. 8: 146-151.
Kim, S.H. and Choi, N.S. 2000. Purification and characterization of subtilisin DJ-4 secreted by Bacillus sp. strain DJ-4 screened from Doen-Jang. Biosci Biotechnol Biochem. 64: 1722-1725.
Konturek, P.C., Kania, J., Konturek, J.W., Nikiforuk, A., Konturek, S.J. and Hahn, E.G. 2003. H. pylori infection, atrophic gastritis, cytokines, gastrin, COX-2, PPAR gamma and impaired apoptosis in gastric carcinogenesis. Med Sci Monit. 9: SR53-66.
Lai, W.C., Min, Z., Uma S., Gang, P. and Larry, M.W. 2003. Differential regulation of lipopolysaccharide-induced monocyte matrix metalloproteinase (MMP)-1 and MMP-9 by p38 and extracelular signal-regulated kinase 1/2 mitogen-activated protein kinases. J Immunol. 170: 6244-6249.
Laroux, F.S., Pavlicl, K.P., Hines, I.N., Kawachi, S., Harada, h., Bharwani, S., Hoffman, J.M. and Grisham, M.B. 2001. Role of nitric oxide in inflammation. Acta. Physiol. Scand. 173: 113-118.
Lawrence, R.A. and Burk, R.F. 1976. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun. 71: 952-958.
Lee, I.H., Hung, Y.H. and Chou, C.C. 2007. Total phenolic and anthocyanin contents, as well as antioxidant activity, of black bean koji fermented by Aspergillus awamori under different culture conditions. Food Chem. 104: 936-942.
Levine, M., Rumsey, S. and Daruwala, R. 1999. Criteria and recommendations for vitamin C intake. JAMA.. 281: 1415-1423.
Lin, P.Y. and Lai, H.M. 2006. Bioactive compounds in legumes and their germinated products. J Agric Food Chem. 54: 3807-3814.
Locksley, R.M., Killeen, N. and Lenardo, M.J. 2001. The TNF and TNF reeptor superfamilies: Integrating normalian Biology. Cell. 104: 487-501.
Loft, S. and Poulsen, H.E. 1996. Cancer risk and oxidative DNA damage in man. J Mol Med. 74: 297-312.
Lotito, S.B. and Balz, F. 2006. Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: Cause, consequence, or epiphenomenon? Free Radic Biol. Med. 41: 1727-1746.
Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem. 193: 265-275.
Madhujith, T. and Shahidi, F. 2005. Antioxidant Potential of Pea Beans (Phaseolus vulgaris L.). J. Food Sci. 70: 85-90.
Marklund, S. and Marklund, G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 47: 469-474.
Maron, D.M. and Ames B.N. 1983. Revised methods for the Salmonella mutagenicity test. Mutat. Res. 113: 173-215.
Martin, S., Favot, L., Matz, R., Lugnier, C. and Andriantsitohaina, R. 2003. Delphinidin inhibits endothelial cell proliferation and cell cycle progression through a transient activation of ERK-1/-2. Biochem Pharmacol. 65: 669-675.
Martinez-Cayuela, M., 1995. Oxygen free radicals and human disease. Biochimie. 77: 147-161.
Masood, S. B. and Rizwana, B. 2010. Nutritional and functional properties of some promising legumes protein isolates. J Nutr. 9: 373-379.
Mccalla, D.R. and Neish, A.C. 1959. Metabolism of phenylpropanoid compounds in Salvia. I. Biosynthesis of phenylalanine and tyrosine. Can J Biochem Physiol. 37: 531-6.
Mccue, P. and Shetty, K. 2003. Role of carbohydrate-cleaving enzymes in phenolic antioxidant mobilization from whole soybean fermented with Rhizopus oligosporus. Food Biotechnol. 17: 27-37.
McEvoy, A.N., Bresnihan, B., FitzGerald, O. and Murphy, E.P. 2004. Cyclooxygenase 2-derived prostaglandin E2 production by corticotropin-releasing hormone contributes to the activated cAMP response element binding protein content in rheumatoid arthritis synovial tissue. Arthritis Rheum. 50:1132-45.
Meir, S., Kanner, J., Akiri, B. and Philosoph-H, S. 1995. Determination and involvement of aqueous reducing compounds in oxidative defense systems of various sencescing leaves. J. Agric. Food Chem. 43: 1813-1819.
Meyer, M., Schreck, R. and Baeuerle, P.A. 1993. H2O2 and antioxidants have opposite effects on activation of NF-κB and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor. EMBO J. 12: 2005-2015.
Miller, N.J. and Rice-Evans, C.A. 1997. The relative contributions of ascorbic acid and phenolic antioxidants to the total antioxidant activity of orange and apple fruit juices and blankcurrant drink. Food Chem. 60: 331-337.
Min, S.W., Ryu S.N. and Kim D.H. 2010. Anti-inflammatory effects of black rice, cyanidin-3-O-β-D-glycoside, and its metabolites, cyanidin and protocatechuic acid. Int Immunopharmacol. 10: 959-966.
Moncada, S. and Higgs, A. 1993. The L-arginine-nitric oxide pathway. N Engl J Med. 329: 2002-2012.
Mortelmans, K. and Zeiger, E. 2000. The Ames Salmonella/microsome mutagenicity assay. Mutat. Res. 455: 29-60.
Moyer, R.A., Hummer, K.E., Finn, C.E., Frei, B. and Wrolstad, R.E. 2002. Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: vaccinium, rubus, and ribes. J Agric Food Chem. 50: 519-525.
Mullen, W., McGinn, J., Lean, M.E., MacLean, M.R., Gardner, P., Duthie, G.G., Yokota, T. and Crozier, A. 2002. Ellagitannins, flavonoids, and other phenolics in red raspberries and their contribution to antioxidant capacity and vasorelaxation properties. J Agric Food Chem. 50: 5191-5196.
Murad, F. 1998. Nitric oxide signals: would you believe that a simple free radical could be a second messenger, autacoid, paracrine substance, neurotransmitter, and hormone? Recent Prog Horm. Res. 53: 43-59.
Murakami, H. 1984. Antioxidative stability of tempeh and liberation of isoflavones by fermentation. Agric Biol Chem. 48: 2971-2975.
Nair, C., Junghans, A.R. and Erhard, M. 2008. J. Phys G: Nucl. Part. Phys. 35, 014036.
Nathan, C. and Xie, Q.W. 1994. Nitric oxide synthases: Role, Tolls, and Control. Cell. 78: 915-918.
Neelam, A., Yon, R. and Val, V. 2008. Inflammation and lung cancer: roles of reactive oxygen/nitrogen species. J Toxicol Environ Health B. 11: 1-15.
Noroozi, M., Angerson, W.J. and Lean, M.E.J. 1998. Effects of flavonoids and vitamin C on oxidative DNA damage to human lymphocytes. Am J Clin Nutr. 67: 1210-1218.
Nussler, A.K. and Billiar, T.R. 1993. Inflammation, immunoregulation, and inducible nitric oxide synthase. J. Leuk. Biol. 54: 171-178.
Ohta, T. 1986. Natto. In: Reddy. N.R., Pierson, M.D., and Salunkhe, D.K. (Eds.), Legume-based Fermented Foods. CRC Press, Boca Raton, FL, USA, pp.85-93.
Okamoto, A., Hanagata, H., Matsumoto, E., Kawamura, Y., Koizumi, Y. and Yanagida, F. 1995. Angiotensin I-converting enzyme inhibitory activities of various fermented foods. Biosci Biotechnol Biochem. 59: 1147-1149.
Opal, S.M. and DePalo, V.A. 2000. Anti-inflammatory cytokines. Impact of basic research on tomorrow’s medicine. Chest. 117: 1162-1172.
Oyaizu, M. 1986. Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr. 44: 307-315.
Packer, L. 1991. Protective role of vitamin E in biological systems. Am J Clin Nutr. 53: 1051s-1055s.
Padmavati, M., Sakthivel, N., Tahara, K.V. and Reddy, A.R.. 1997. Differential sensitivity of rice pathogens to growth inhibition by flavonoids. Phytochemistry. 46: 499-502.
Pairet, M. and Engelhardt, G. 1996. Distinct isoforms(COX-1 and COX-2)of cyclooxygenase:possible physiological and therapeutic implications. Fundam Clin Pharmacol. 10: 1-17.
Panthong, A., Tassaneeyakul, W., Kanjanapothi, D., Tantiwachwuttikul, P. and Reutrakul, V. 1989. Anti-inflammatory activity of 5,7-dimethoxyflavone. Planta Med. 55: 133-136.
Papas, A.M. 1999. Diet and antioxidant status. Food Chem Toxic. 37: 999-1007.
Petra, P.R. 2000. Regulation of antioxidant defense in cells derived from the human lung. ISBN 951-459011-2.
Pollockm, J.S., Forsternann, U., Mitchell, J.A., Warner, T.D., Schmidt, H.H.H.W., Nakane, M. and Murad, F. 1991. Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells. Proc Natl Acad Sci U S A. 88:10480-10484
Pool-Zobel, B.L., Bub, A., Schröder, N. and Rechkemmer, G. 1999. Anthocyanins are potent antioxidants in model systems but do not reduce endogenous oxidative DNA damage in human colon cells. Eur J Nutr. 38: 227-234.
Preston, N.W. 1977. Cajanone: an antifungal isoflavanone from Cajanus cajan. Phytochemistry. 16: 143-144.
Pyo, Y.H. and Lee, T.C. 2007. The potential antioxidant capacity and angiotensin I-converting enzyme inhibitory activity of Monascus-fermented soybean extracts: evaluation of Monascus-fermented soybean extracts as multifunctional food additives. J Food Sci. 72: s218-s223.
Qureshi, S.T, Gros, P. and Malo, D. 1999. The LPS locus: Genetic regulation of host response to bacterial lipopoltsaccharide. Inflamm Res. 48: 613-620.
Radomski, M.W. and Salas, E. 1995. Nitric oxide--biological mediator, modulator and factor of injury: its role in the pathogenesis of atherosclerosis. Atherosclerosis. 118: S69-80.
Ramanathan, A., Das, N.P. and Tan, C.H., 1994. Effects of g-linoleic acid, flavonoids, and vitamins on cytotoxicity and lipid peroxidation. Free Radic Biol Med. 16: 43-48.
Ramirez-Tortosa, C., Andersen, O.M., Gardner, P.T., Morrice, P.C., Wood, S.G., Duthie, S.J., Collins, A.R. and Duthie, G.G. 2001. Anthocyanin-rich extract decreases indices of lipid peroxidation and DNA damage in vitamin E-depleted rats. Free Radic. Biol. Med. 31: 1033-1037.
Randhir, R., Vattem, D. and Shetty, K. 2004. Solid-state bioconversion of fava bean by Rhizopus oligosporus for enrichment of phenolic antioxidants and L-DOPA. Innovative Food Science and Emerging Technologies. 5: 235-244.
Reddy, V.S., Dash, S. and Reddy, A.R. 1995. Anthocyanin pathway in rice (Oryza Sativa L.): identification of a mutant showing dominant inhibition of anthocyanins in leaf and accumulation of proanthocyanidins in pericarp. Thero Appl. Genet. 91: 301-312.
Rietschel, E.T., Kirikae, T., Schade, F.U., Mamat, U., Schmidt, G., Loppnow, H., Ulmer, A.J., Zahringer, U., Seydel, U. and Padova, F. Di. 1994. Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J. 8: 217-725.
Robak, J. and Gryglewski, R.J. 1988. Flavonoids are scavengers of superoxide anions. Biochem Pharmacol. 37: 837-841.
Rouseff, R. and Nagy, S. 1994. Health and nutrition benefits of citrus fruit components. Food Technol. 48: 125-139.
Rupp, E.A., Cameron, P.M., Ranawat, C.S., Schmidt, J.A. and Bayne, E.K. 1986. Specific bioactivities of monocyte-derived interleukin 1 alpha and interleukin 1 beta are similar to each other on cultured murine thymocytes and on cultured human connective tissue cells. J Clin Invest. 78: 836-839.
Ryu, S.N., Park, S.Z. and Ho, C.T. 1998. High performance liquid chromatographic determination of anthocyanin pigments in some varieties of black rice. J Food Drug Anal. 6: 729-736.
Salah, N., Miller, N.J., Paganga, G., Tijburg, L., Bolwell, G.P. and Rice- Evans, C. 1995. Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch Biochem Biophys. 322: 339-346.
Samuelsson, B., Granstrom, E., Green, K., Hamberg, M. and Hammarstrom, S. 1975. Prostaglandins. Ann. Rev. Biochem. 44: 669-695.
Santiago, L.A., Hiramatsu, M. and Mori, A. 1992. Japanese soybean paste miso scavenges free radicals and inhibits lipid peroxidation. J Nutr Sci Vitaminol (Tokyo). 38: 297-304.
Sato, M., Bagchi, D., Tosaki, A. and Das, D.K. 2001. Grape seed proanthocyanidin reduces cardiomyocyte apoptosis by inhibiting ischemia/reperfusion-induced activation of JNK-1 and c-JUN. Free Radic Bio Med. 31: 729-737.
Sato, T., Yamada, Y., Ohtani, Y., Mitsui, N. and Murasawa, H. 2001. Production of menaquinone (vitamin K2)-7 by Bacillus subtilis. J Biosci Bioeng. 91: 16-20.
Sautebin, L. 2000. Prostaglandins and nitric oxide as molecular target for anti-inflammatory therapy. Fitoterapia. 71: S48-S57.
Seeram, N.P., Momin, R.A., Nair, M.G. and Bourquin, L.D. 2001 Cyclooxygenase inhibitory and antioxidant cyanidin glycosides in cherries and berries. Phytomedicine. 8: 362-369.
Seok, S.H. 1996. Antimutagenic effect of solvent extracts of Korean fermented soy bean products. Food and Bio. 5: 263-267.
Shih Y.J., Jeng, T.L., Tseng, T.H. and Wang, C.S.. 2004. The composition and function of anthocyanins in colored rice. J. Agric. Res. 53: 221-228.
Shimada, K., Fujikawa, K., Yahara, K., Nakamura, T. 1992. Antioxidative properties of xanthan on the anti-oxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem. 40: 945-948.
Simmons, D.L., Botting, R.M. and Hla, T. 2004. Cyclooxygenase Isozymes: The Biology of Prostaglandin Synthesis and Inhibition. Pharmacol Rev. 56: 387–437.
Simmons, D.L., Botting, R.M. and Hla, T. 2004. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol Rev. 56: 387-437.
Singleton, V.L. and Rossi, J.A. J. 1965. Colorimetry of total phenolics with phosphomolybdic – phosphotungstic acid reagent. Am. J. Enol. Vitic. 16: 144-153.
Snyder, H.E. and Kwon, T.W. 1987. Soybean Utilization. AVI Book, New York.
Stadtman, E.R. 1992. Protein oxidation and aging. Science. 257: 1220-1224.
Staviric, B. 1994. Antimutagens and anticarcinogens in foods. Food Chem Toxicol. 32: 79-90.
Steinbach, G., Lynch, P.M., Phillips, R.K., Wallace, M.H., Hawk, E., Gordon, G.B, Wakabayashi, N., Saunders, B., Shen, Y., Fujimura, T., Su, L.K. and Levin, B. 2000. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N. Engl. J. Med. 342: 1946-1952.
Subarnas, A. and Wagner, H. 2000. Analgesic and anti-inflammatory activity of the proanthocyanidin shellegueain A from Polypodium feei METT. Phytomedicine. 7: 401-405.
Sumi, H. 1998. Accumulation of vitamin K (menaquinone-7) in plasma after ingestion of natto and natto Bacilli (Bacillus natto). Japan Function Food Research Association: 1-4.
Sumi, H. and Ohosugi, T. 1999. Anti-bacterial component dipicolic acid measured in natto and Bacillus natto. Nippon Nogeikagaku Kaishi. 73: 31-33.
Sumi, H., Hamada, H., Nakanishi, K. and Hiratani, H. 1990. Enhancement of the fibrinolytic activity in plasma by oral administration of nattokinase. Acta Haematol. 84: 139-143.
Sumi, H., Hamada, H., Nakanishi, K. and Hiratani, H. 1990. Enhancement of the fibrinolytic activity in plasma by oral administration of Nattokinase. Acta Haematol. 84: 139-43.
Sumi, H., Hamada, H., Tsushima, H., Mihara, H. and Muraki, H. 1987. A novel fibtinolytic enzyme (nattokinase) in the vegetable cheese natto; a typical and popular soybean food in the Japanese diet. Experientia. 43: 1110-1111.
Sun, T. and Ho, C.T. 2005. Antioxidant activities of buckwheat extracts. Food Chem. 90: 743-749.
Suzuki, Y., Kondo, K., Ichise, H., Tsukamoto, Y., Urano, T. and Umemura, K. 2003a. Dietary supplementation with fermented soybean suppresses intimal thickening. Nutrition. 19: 261-264.
Suzuki, Y., Kondo, K., Matsumoto, Y., Zhao, B.Q., Otsuguro, K., Maeda, T., Tsukamoto, Y., Urano, T. and Umemura, K. 2003b. Dietary supplementation of fermented soybean, natto, suppresses intimal thickening and modulates thlysis of mural thrombi after endothelial injury in rat femoral artery. Life Sci. 73: 1289-1298.
Takahata, Y., Ohnishi-Kameyama, M., Furuta, S., Takahashi, M. and Suda, I. 2001. Highly polymerized procyanidins in brown soybean seed coat with a high radical-scavenging activity. J. Agric. Food Chem. 49: 5843-5847.
Takanori, T., Kaoru, S. and Katsumi, O. 1996. Inhibition of lipid peroxidation and the active oxygen radical scavenging effect of anthocyanin pigments isolated from Phaseolus vulgaris L. Biochem Pharmacol. 52: 1033-1039.
Takeoka, G.R., Dao, L.T., Full, G.H., Wong, R.Y., Harden, L.A., Edwards, R.H., and Berrios, J.D.J.. 1997. Characterization of black bean (Phaseolus vulgaris L.) anthocyanins. J. Agric. Food Chem. 45: 3395-3400.
Tamura, H. and Yamagami, A. 1994. Antioxidative activity of Monoacylated anthocyanins isolated from Muscat Bailey A Grape. J. Agric. Food Chem. 42: 1612.
Tatum, V.L., Changchit, C. and Chow, C.K. 1990. Measurement of malondialdehyde by high performance lipid chromatography with fluorescence detection. Lipids. 25: 226-229.
Thomas, C.E. 1997. Oxygen radicals and the disease process. Harwood academic publisher. pp. 239.
Todd, J.J. and Vodkin, L.O. 1993. Pigmented soybean (Glycine max) seed coats accumulate proanthocyanidins during development. Plant Physiol. 102: 663-670.
Tsuda, T., Kato, Y. and Osawa, T. 2000. Mechanism for the peroxynitrite scavenging activity by anthocyanins. FEBS Lett. 484: 207-210.
Tsuda, T., Ohshima, K., Kawakishi, S.,Osawa, T. Nakayama, T. and Kawakishi, S. 1994a. Antioxidative pigments isolated from the seeds of Phaseolus vulgaris L.. J Agric Food Chem. 42: 248-251.
Tsuda, T., Shigo, K., Ohshima, K., Kawakishi, S. and Osawa T. 1996. Inhibition of lipid peroxidation and the active oxygen radical scavenging effect of anthocyanins pigments isolated from Phaseolus vulgaris L.. Biochem Pharmacol. 52: 1033-1039.
Tsuda, T., Watanabe, M., Ohshima, K., Norinobu, S., Choi, S. W., Kawakishi, S. and Osawa, T. 1994b. Antioxidative activity of the anthocyanin pigments cyanidin 3-O-B-D-glucoside and cyanidin. J Agric Food Chem. 42: 2407-2410.
Tsukamoto, Y. 2000. Serum MK- 7 and osteocalcin in individuals with natto intake. J Bone Miner Metab. 18: 216-222.
Tsukamoto, Y., Kasai, M. and Kakuda, H. 2001. Construction of a Bacillus subtilis (natto) with high productivity of vitamin K2 (menaquinone-7) by analog resistance. Biosci Biotechnol Biochem. 65: 2007.
Turini, M.E. and DuBois, R.N. 2002. Cyclooxygenase-2: a therapeutic target. Annu Rev Med. 53: 35-57.
Turkmen, N., Sari, F. and Velioglu, Y.S. 2005. The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chem. 93: 713-718.
Urano, T., Ihara, H., Umemura, K., Suzuki, Y., Oike, M., Akita, S., Tsukamoto, Y., Suzuki, I. and Takada, A. 2001. The profibrinolytic enzyme subtilisin NAT purified from Bacillus subtilis cleaves and inactivates plasminogen activator inhibitor type 1. J Biol Chem. 276: 24690-24696.
Vattem, D.A. and Shetty, K. 2003. Ellagic acid production and phenolic antioxidant activity in cranberry pomace (Vaccinium macrocarpon) mediated by Lentinus edodes using a solid-state system. Process Biochemistry. 39: 367-379.
Vaughan, D.E. 2001. Angiotensin, fibrinolysis, and vascular homeostasis. Am J Cardiol. 87: 18C-24C.
Venukumar, M.R. and Latha, M.S. 2002. Antioxidant activity of curculigo orchioides in carbon tetrachloride-induced hepatopathy in rats. Indian J Clin Biochem. 17: 80-87.
Villar, J., Maca-Meyer, N., Pérez-Méndez, L. and Flores, C. 2004. Bench-to-bedside review: understanding genetic predisposition to sepsis. Critical Care. 8: 180-189.
Von, S.C. 1987. The Chemical Basis of Radiation Biology. Talyor and Francis, London.
Waleh, N.S., Rapport, S.J. and Mortelmans, K.E. 1982. Development of a toxicity test to be coupled to the Ames Salmonella assay and the method of construction of the required strains. Mutat. Res. 97: 247-256.
Wang, H., Cao, G. and Prio, R.L. 1997. Oxygen radical absorbing capacity of anthocyanins. J Agric Food Chem. 45: 304-9.
Wang, H., Cao, G. and Prior, R.L.. 1997. Oxygen radical absorbing capacity of anthocyanins. J Agric Food Chem. 45: 304-309.
Wang, H., Nair, M.G., Strasburg, G.M., Chang, Y.C., Booren, A.M., Gray, J.I. and DeWitt, D.L. 1999. Antioxidant and antiinflammatory activities of anthocyanins and their aglycon, cyanidin, from tart cherries. J. Nat. Prod. 62: 294-296.
Wang, H.T. and Murphy, P.A. 1994. Isoflavone content in commercial soybean foods. J Agric Food Chem. 42:1666-1673.
Wang, J. and Mazza, G. 2002. Inhibitory effects of anthocyanins and other phenolic compounds on nitric oxide production in LPS/IFN-gamma -activated RAW 264.7 macrophages. J Agric Food Chem. 50: 850-857.
Wang, M.Y. and Liehr, J.G. 1995. Induction by estrogens of lipid peroxidation and lipid peroxide-derived malonaldehyde–DNA adducts in male Syrian hamsters: role of lipid peroxidation in estrogen-induced kidney carcinogenesis. Carcinogenesis. 316: 38-46.
Wang, S.H., Zhang, C., Yang, Y.L., Diao, M. and Bai, M.F. 2008. Screening of a high fibrinolytic enzyme producing strain and characterization of the fibrinolytic enzyme produced from Bacillus subtilis LD-8547. World J Microbiol Biotechnol. 24: 475-482.
Wang, Z.J., Xiao G.S. and Liu X.M. 2009. Anti-inflammatory Activity of Anthocyanins from Mulberry on adjuvant-induced Arthritis. Chin J Public Health. 25: 181-183.
Whisler, R.L., Goyette, M.A., Grants, I.S. and Newhouse, Y.G. 1995. Sublethal levels of oxidant stress stimulate multiple serine/threonine kinases and suppress protein phosphatases in Jurkat T cells. Arch Biochem Biophys. 319: 23-35.
Wu, J. and Ding, X. 2001. Hypotensive and physiological effect of angiotensin -converting enzyme inhibitory peptides derived from soy protein on spontaneously hypertensive rats. J Agric Food Chem. 49: 501-506.
Wu, M.H., Wang, C.A., Lin, C.C., Chen, L.C., Chang, W.C. and Tsai SJ. 2005. Distinct regulation of cyclooxygenase-2 by interleukin-1beta in normal and endometriotic stromal cells. J Clin Endocrinol Metab. 90:286-295.
Xiao, X., Lu, G. and Zhang, J. 2000. Studies on the black pigments for its ability to scavenge active oxygen radical and antioxidant actions. Pharm Biotechnol. 7: 112-115.
Xie, Q.W., Kashiwabara, Y. and Nathan, C. 1994. Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J Biol Chem. 269: 4705-4708.
Xu, B.J. and Chang, S.K.C. 2007. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J Food Sci. 72: 159-166.
Xu, J.R., Zhang, M.W., Liu, X.H., Liu, Z.X., Zhang, R.F., Sun, L. and Qiu, L.J. 2007. Correlation between antioxidation and the content of total phenolics and anthocyanin in black soybean accessions. Agric Sci in China. 6: 150-158.
Yen,G.C. and Chen, H.Y. 1998. Scavenging effect of various tea extracts on superoxide derived from the metabolism of mutagens. Biosci Biotechnol Biochem. 62: 1768-1770.
Yokota, T., Hattori, T., Ohishi, H., Hasegawa, K. and Watanabe, K. 1996. The effect of antioxidant-containing fraction from fermented soybean food on atherosclerosis develop ment in cholesterol-fed rabbits. Lebensm-Wiss U Technology. 29: 751-755.
Youdim, K.A., Martin, A. and Joseph, J.A. 2000. Induction of the elderberry anthocyanins by endothelial cells increases protection against oxidative stress. Free Radic Biol Med. 29: 51-60.
Youdim, K.A., McDonald, J., Kalt, W. and Joseph, J.A. 2002. Potential role of dietary flavonoids in reducing microvascular endothelium vulnerability to oxidative and inflammatory insults. J Nutr Biochem. 13: 282-288.
Yu, J., Bao, Z.Y., Xu, Y.M., Khaoustov, V. and Yoffe, B. 2009. Cyanidin attenuated H2O2-induced oxidative stress in Huh7 cell by inhibiting phosrelate-c-Jun and ROS production. Chinese Journal of Integrated Traditional and Western Medicine on Liver Diseases. 19: 24-26
Zangar, R.C., Benson, J.M., Burnett, V.L. and Springer, D.L. 2000. Cytochrome P450 2E1 is the primary enzyme responsible for low-dose carbon tetrachloride metabolism in human liver microsomes. Chem Biol Interact. 125: 233-243.
Zheng, Z.L., Z.Y. Zuo, Z.G. Liu, K.C. Tsai, A.F. Liu, G.L. Zou. 2005. Construction of a 3D model of nattokinase, a novel fibrinolytic enzyme from Bacillus natto A novel nucleophilic catalytic mechanism for nattokinase. J Mol Graph Model. 23: 373-380.
Zielinski, H. and Kozlowska, H. 2000. Antioxidant activity and total phenolics in selected grains and their different morphological fractions. J Agric Food Chem. 48: 2008-2016.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔