(3.235.41.241) 您好!臺灣時間:2021/04/15 05:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃美旗
論文名稱:以燕麥渣生產燕麥酒之品質評估與活性分析
論文名稱(外文):The Quality Evaluation and Activities of Oat Wines Produced by Oat Residues
指導教授:邱義源邱義源引用關係
指導教授(外文):Robin Y.-Y. Chiou
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:食品科學暨生物藥學研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:80
中文關鍵詞:Botryosphaeria rhodina燕麥渣抗氧化抗糖化
外文關鍵詞:Botryosphaeria rhodinaoat residueantioxidantantiglycative activity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:550
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
燕麥飲品為近年新興保健飲品之一,其加工生產過程中經常伴隨著大量的燕麥渣副產物的產生,其利用價值低,如何利用燕麥渣以提升附加價值,為值得探討之題材。Botryosphaeria rhodina能夠於特定條件下產生高量的β-glucan多醣,其具有提升免疫力之功效,而燕麥具有豐富β-(1,3)(1,4)-glucan,為良好膳食纖維來源,可降低血中膽固醇及血糖之功效,有助於糖尿病的預防。本研究以燕麥渣為釀酒原料,先經過Botryosphaeria rhodina預發酵後,再分別添加15% 特砂、二砂、冬瓜糖及黑糖等,經添加0.5% 種麴後,於常溫靜置發酵5天,過濾後可得過濾酒液及酒粕。進一步針對酒液及酒粕進行化學及活性分析,而酒粕部分則加工製成餅乾。結果顯示,經過5天的發酵後,添加特砂、二砂、冬瓜糖及黑糖四種燕麥酒之酒精濃度分別為10.0、9.8、9.0及8.8% ,其pH值分別為4.2、4.2、4.3及4.3;其可溶性固形物含量分別為6.7、6.7、6.6及7.2 °Brix ;其可滴定酸含量分別為0.40、0.38、0.34及0.37%;其總糖含量為1.2、1.2、1.2及1.4%。生物活性方面,酒液總抗氧化能力 (TEAC)及還原力皆以黑糖發酵者最高,分別相當於2386±64 μM Trolox及577±4 ppm維生素C;酒液抗糖化(Anti-glycation)試驗方面,以BSA-fructose反應系統探討酒液對糖化初期產物(Amadori products)、中間產物 (α-雙羰基化合物)及進階糖化終產物(Advanced glycated end products; AGEs)之抑制活性,顯示無論Amadori products、α-雙羰基化合物或是AGEs抑制效果均隨濃度之提升而提高,亦以黑糖發酵者之活性最強。在酒粕抗氧化方面,酒粕之甲醇萃取物中總抗氧化能力 (TEAC)及還原力皆以黑糖發酵者最高,分別相當於544±27 μM Trolox及78.53±3.02 ppm維生素C;酒粕之水萃取物中亦以黑糖發酵者抗氧化效果較佳,其總抗氧化能力 (TEAC)及還原力分別相當於695±49 μM Trolox及109.70±0.95 ppm維生素C;酒粕抗糖化試驗方面,無論是甲醇萃物或是水萃物,其AGEs生成抑制能力均隨濃度上升而提高,但於相同濃度下無明顯差異性。再將酒粕以25% (w/w) 取代麵粉,予以商品化製成燕麥酒粕餅乾,進行喜好性官能品評,品評結果以特砂燕麥酒粕餅乾整體接受度最高,其次為黑糖燕麥酒粕餅乾。由整體實驗結果發現,黑糖燕麥酒及酒粕均具有良好的抗氧化及抗糖化能力,製成酒粕餅乾之消費者接受度亦高,具有進一步開發相關特色商品及探討之價值。
Oat meal drink is popular in recent years. The residues separated and filtered from oat meal during processing are low-used byproducts. It is of worth to use the residues to develop value-added products. Botryosphaeria rhodina could produce higher β-glucan which is effective to improve immunity at some conditions. On the other hand, oats have rich β-(1,3)(1,4)-glucan, which are the good source of dietary fiber to reduce the cholesterol and blood sugar to prevent diabetes. In this study, oat residues were used as raw material for fermentation in preparation of oat wines. Oat residues suspensions were fermented with Botryosphaeria rhodina for 36 h, and heated up to 90oC. Then the broths were respectively supplemented with 15% of cane sugar, re-crystallized cane sugar, winter melon sugar and brown sugar, and fermented for 5 days at ambient temperature after inoculation with 0.5% koji. After filtration, oat wines and oat lees were obtained. The pH values of the oat wines fermented with cane sugar, re-crystallized cane sugar, winter melon sugar and brown sugar were 10, 9.8, 9.0 and 8.8%, respectively. The total solids were 6.7, 6.7, 6.6 and 7.2%, respectively. The total carbohydrate content were 0.40, 0.38, 0.34 and 0.37%, respectively. After subjecting to bioactivity assessments, the trolox equivalent antioxidant capacities (TEAC) and reducing powers of oat wines fermented with brown sugar were higher than other wines. They were equivalent to 2386±64 μM Trolox and 577±4 ppm L-ascorbic acid, respectively. As further subjecting to antiglycative activity determination by BSA-fructose system to assess inhibitory effects on formation of the initial products (Amadori products), middle products (α-dicarbonyl compounds) and advanced glycated end products. Generally, the higher concentrations of all fermented wines the higher inhibitory activities were observed. On the aspects of oat lees, the TEAC determinations and reducing powers of oat lees fermented with brown sugar were higher than others. They were equivalent to 544±27 μM Trolox and 78.53±3.02 ppm L-ascorbic acid respectively. The TEAC determinations and reducing powers of the water extracts of oat lees were 695±49 μM Trolox and 109.70±0.95 ppm L-ascorbic acid, respectively. For application of the lees in formulation and preparation of cookies, the lees-made cookies made with lees fermented with cane sugar were the most acceptable based on sensory preference evaluation, and followed by cookies made with lees fermented with brown sugar. As generalized, it is of merit to demonstrate that the oat wine and lees fermented with brown sugar have exhibited potent antioxidant and antiglycative activities, and been accepted as an ingredient in formulation and production of cookies.
目 錄
中文摘要 I
英文摘要 III
目錄 V
表目錄 IX
圖目錄 X
附錄圖表 XII
壹、前言 1
貳、文獻回顧 2
一、 燕麥簡介 2
二、 Botryosphaeria rhodina 3
三、 酒類簡介 3
(一) 酒的釀造過程 5
(二) 酒的保健與功效 6
四、 抗氧化與自由基 8
(一) 自由基與活性氧之簡介 8
(二) 自由基來源與疾病 9
(三) 抗氧化系統與天然抗氧化劑 9
五、 抗糖化特性 12
(一) 糖化簡介 12
(二) 糖化對人體之危害 13
(三) 抗糖化作用 13
參、實驗材料與方法 15
一、 實驗架構 15
二、 實驗材料 17
(一) 材料 17
(二) 化學藥品 17
(三) 儀器設備 19
三、 實驗方法 21
(一) 經Botryosphaeria rhodina RCYU 30101發酵之燕
麥酒製作流程 21
(二) 燕麥酒粕的水萃物及甲醇萃物製備 23
(三) 分析方法 23
1. 酒精度測定 23
2. 可溶性固形物 23
3. 酸鹼值 (pH值) 24
4. 可滴定酸度 24
5. 總醣含量測定 24
6. 總酚類化合物含量 25
7. TEAC總抗氧化活性 25
8. 還原力測定 26
9. 亞麻油酸抗氧化能力測定 27
10. 抑制糖化反應進階終產物之活性測定 27
11. 抑制糖化初級產物之活性測定 28
12. 抑制糖化中間產物之活性測定 29
13. SDS-PAGE 測定糖化蛋白表現 29
14. 喜好性官能品評 31
(四) 統計分析 32
肆、結果與討論 33
一、 酒精濃度測定 33
二、 燕麥酒的一般成份分析 33
三、 燕麥酒的抗氧化能力分析 36
(一) 燕麥酒之TEAC總抗氧化活性分析 36
(二) 燕麥酒之還原力活性分析 36
(三) 燕麥酒之亞麻油酸抗氧化能力測定 37
四、 燕麥酒的抗糖化分析 42
(一) 燕麥酒抑制進階糖化終產物之活性分析 42
(二) 燕麥酒抑制糖化初期產物之活性分析 45
(三) 燕麥酒抑制糖化中期產物之活性分析 47
五、 燕麥酒粕的抗氧化分析 49
(一) 燕麥酒粕之TEAC總抗氧化活性分析 49
(二) 燕麥酒粕之還原力活性分析 50
(三) 燕麥酒粕之亞麻油酸抗氧化能力測定 50
六、 燕麥酒粕的抗糖化分析 57
(一) 燕麥酒粕抑制進階糖化終產物之活性分析 57
(二) 燕麥酒粕糖化蛋白SDS電泳分析 57
七、 燕麥酒粕餅乾的官能品評結果 62
伍、結論 64
陸、參考文獻 65
柒、作者簡介 71

表 目 錄
表一、燕麥酒於發酵終點之pH值、可溶性固形物、可滴定酸
、總糖含量及總酚含量分析 35

圖目錄
圖一、燕麥中ß-glucan結構 3
圖二、啤酒釀造過程 5
圖三、自由基終止型抗氧化劑化合物 10
圖四、進階糖化終產物產生途徑 12
圖五、ABTS反應機制 26
圖六、四種不同燕麥酒之TEAC總抗氧化活性分析 39
圖七、四種不同燕麥酒之還原力活性分析 40
圖八、四種不同燕麥酒之亞麻油酸抗氧化力分析 41
圖九、四種不同燕麥酒凍乾粉於不同濃度抑制進階糖化終產物
之活性變化 44
圖十、四種不同燕麥酒凍乾粉於不同濃度抑制糖化反應初期
產物 (Amadori products)之活性變化 46
圖十一、四種不同燕麥酒凍乾粉於不同濃度抑制糖化反應中期
產物 (α-雙羰基化合物)之活性變化 48
圖十二、四種不同燕麥酒粕甲醇萃物之TEAC總抗氧化活性分
析 51
圖十三、四種不同燕麥酒粕水萃物之TEAC總抗氧化活性分析 52
圖十四、四種不同燕麥酒粕甲醇萃物之還原力活性分析 53
圖十五、四種不同燕麥酒粕水萃物之還原力活性分析 54
圖十六、四種不同燕麥酒粕甲醇萃物稀釋五倍後之亞麻油酸抗
氧化力分析 55
圖十七、四種不同燕麥酒粕水萃物稀釋五倍後之亞麻油酸抗氧
化力分析 56
圖十八、四種不同燕麥酒粕甲醇萃取物於不同濃度抑制進階糖
化終產物之活性變化 59
圖十九、四種不同燕麥酒粕水萃物於不同濃度抑制進階糖化終
產物之活性變化 60
圖二十、以SDS-PAGE比較四種不同燕麥酒粕之抗糖化活性
(箭頭處為糖化蛋白) 61
圖二十一、喜好性官能品評雷達圖 63

附錄圖表
附錄表一、YM Agar培養基組成成份 72
附錄表二、生長基質液配方 73
附錄表三、餅乾配方 74
附錄表四、SDS-PAGE膠體配方 75
附錄圖一、發酵裝置 76
附錄圖二、酒粕餅乾製造流程 77
附錄圖三、Trolox標準曲線 78
附錄圖四、L-ascorbic acid標準曲線 79
附錄圖五、BHT標準曲線 80


陸、參考文獻
林耕年. (1988) 釀造學,p.35,復文書局。
林毓芷。2009年。Botryosphaeria rhodina RCYU 30101生產胞外多糖之特性與其安全性探討。國立嘉義大學食品科學系碩士論文。
張為憲、李敏雄、呂政義、張永和、陳昭雄、孫璐西、陳怡宏、張基郁、顏國欽、林志城及林慶文。1995年。食品化學,國立編譯館。
劉俊霆。2010年。以不同基質培養Botryosphaeria rhodina RCYU 30101之發酵液抗氧化及抗糖化活性探討。國立嘉義大學食品科學系碩士論文。
Ahmad M. S.; Ahmad N. (2006). Antiglycation properties of aged garlic extract: Possible role in prevention of diabetic complications. J. Nutr., 136, 796-799.
Angelov, A., Gotcheva, V., Hristozova, T. and Gargova, S. (2005). Application of pure and mixed probiotic lactic acid bacteria and yeast cultures for oat fermentation. J. of the Sci. of Food and Agri.. 85, 2134-2141.
Baker., J. R., Zyzak, D. V., Thorpe, S. R., Baynes, J. W. (1994) Chemistry of the fructosamine assay: D-glucosone is the product of oxidation of Amadori compounds during the fructosamine assay. Clin Chem., 40, 1950-1955.
Bonorden, W. R.; Pariza, M. W. (1994). Antioxidant nutrients and protection from free radicals. Nutr Toxicol New York: Raven, 19-48.
Charalampopoulos, D., Wang, R., Pandiella, S. S and Webb, C. (2002). Application of cereals and cereal components in functional foods: a review. Int J Food Microbiol, 79, 131–141.
Chistel, Q. D., Bernard, G., Jacques, V., Thierry, D., Claude, B., Michel, L., Micheline, C., Jean-Cluade, C., Francois, B. and Francis, T. (2000) Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J. of Ethnopharm., 2, 35-42.
Chou, P. Y., Hong, C. H., Chen, W., Li, Y. J., Chen, Y. S. and Chiou. Y. Y. (2006). Glass distilling collector applied for HCN recovery from submerged culture broth and fruiting body of pleurotus eryngii for identification and quantification. J. Agric. Food Chem., 54, 1551-1556.
Demirbas, A. (2005). Beta-glucan and mineral nutrient contents of cereals grown in turkey. Food Chem., 90, 273–277.
Dimberg, L. H., Theander, O., Lingnert, H. Avenanthramides (1993) A group of phenolic antioxidants in oats. Cereal Chem., 1993, 70, 637-641.
Dubios, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. and Smith, F. (1995) Colorimetric method for determination of sugars and related substance. Analytical Chem., 28, 350-356.
Evans, P.; Halliwell, B. (2006). Free radicals and hearing. Cause, consequence, and criteria. Annals of the New York Academy of Science, 884, 19-40.
Falch, B. H., Espevik, T., Ryan, L. and Stokke, B. T. (2000) The cytokine stimulating activity of (13)-β-glucans is dependent on the triple helix conformation. Carbohydrate Research, 329, 587-596.
Finaud, J., Lac, G. and Filaire, E. (2006). Oxidative stress: relationship with exercise and training. Sports Med., 36, 327-358.
Gallaher, D. D. (2000). Dietary fiber and its physiological effects, in: Essentials of Functional Foods, ed by SchmidtM. And Labuza TP. Aspen Publishers Inc, Gaithersburg, Maryland.
Gutteridge, J. M. C. (1993). Free radicals in disease process: A complication of cause and consequence. Free Rad Res Commun, 19, 141-158.
Halliwell, B., Gutteridge, J. M. C., and Cross, C. E. (1992). Free radicals, antioxidants, and human disease: Where are we now? J Lab Clin Med, 119, 598-620.
Harman, D. (2003). The free radical theory of aging. Antioxid Redox Signal., 5, 557-561.
Hsu, W. C., Cho, P. J., Wu, M. J., Chiou, R. Y. Y. (2002). A rapid and small-scale method for estimating antioxidative potency of peanut sprouts. J. of Food Sci., 67, 2604-2608.
Ito, N., Fukushima, S. and Tsuda, H. (1985). Carcinogenicity and modification of the carcinogenic response by BHA, BHT and other antioxidants. CRC Crit. Rev. Toxicol, 15, 109-150.
Jacob, R. A. (1995). The integrated antioxidant system. Nutrition Research, 15, 755-766.
Jang, M. (1997). Cancer chemopreventive activity of resveratol, an natural product derived from grapes. Science, 275, 218-220.
Kim, H. J.; White, P. J. (2009). In vitro fermentation of oat flours from typical and high β-Glucan oat lines. J. Agric. Food Chem., 57, 7529–7536.
Michailides, T. J., Morgan, D. P. and Felts, D. (2002). First report of Botryosphaeria rhodina causing shoot blight of pistachio in California. Plant disease, 86, 1273.
Montonen J., Knekt P., Jarvinen R. and Reunanen A. (2004) Dietary antioxidant intake and risk of type 2 diabetes. Diabetes Care, 27, 362-366.
Peng, X., Zheng, Z., Cheng, K. W., Shan, F., Ren, G. X., Chen, F. and Wang, M. (2008). Inhibitory effect of mung bean extract and its constituents vitexin and isovitexin on the formation of advanced glycation endproducts. Food Chem., 106, 475-481.
Peterson, D. M. (2001) Oat antioxidants. J. Cereal Sci, 33, 115-129.
Pietta, P. G. (2000). Flavonoids as antioxidants. J. Nat, Prod, 63, 1035-1042.
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26, 1231-1237
Schechter, S. R. (1996). Fighting free radicals with antioxidant. Health Foods Business, 6, 28-29.
Selbmann, L., Stingele, F. and Petruccioli, M. (2003) Expolysaccharide production by filamentous fungi: the example of Botrysphaeria rhodina. Antonie van Leeuwenhoek, 84, 135-145.
Selbmann, L., Crognale, S. and Petruccioli, M. (2002). Exopolysaccharide production from Sclerotium glucanicum NRRL 3006 and Botryosphaeria rhodina DABAC-P82 on raw and hydrolysed starchy materials. Letters in Applied Microbiology, 34, 51-55.
Shin, M. S., Lee, S., Lee, K. Y. and Lee, H. G. (2005) Structural and biological characterization of aminated-derivatized aat β-Glucan. J. Agric. Food Chem., 53, 5554-5558.
Simone Ferreira Mendesa, b, Osvaldo dos Santos Jr. a, Aneli M. Barbosab, Ana Flora D. Vasconcelosa, Gabriel Aranda-Selverioa, Nilson K. Monteiroa, Robert F. H. Dekkerc, Mariana Sá Pereirad, Ana Maria F. Tovar d, Paulo A. de Souza Mourãod,e, Maria de Lourdes Corradi da Silvaa. (2009) Sulfonation and anticoagulant activity of botryosphaeran from Botryosphaeria rhodina MAMB-05 grown on fructose. Int. J. of Bio. Macromolecules. 45, 305-309.
Singleton, V. L. and Rossi, J. A. J. R. (1965) Colorimetry of total phenolics with phoshomolybdic-phosphotungstic acid reagents. American. J. of Enology and Viticulture, 16, 144-153.
Stark, A.; Madar, Z. (1994). Dietary fiber, in functional foods: Designer Foods, pharmafoods, nutraceuticals, ed by Goldberg I. Chapman & Hall, New York, pp 183-201.
Wang, S. H., Chang, J. C., Pokkaew, R., Lee, J. F. and Chiou, Y. Y. (2011). Modified fast procedure for the detection and screening of antiglycative phytochemicals. J. Agri Food Chem.,59, 6906-6912.
Wang, W.; Marc, T. G. (1999). Antioxidant property of dietary phenolic agent in a human LDL-oxidation ex vivo model: interaction of protein binding activity. Nutr. Reaseach, 19, 191-202.
Weng, B. C., Lin, Y. C., Hu, C. W., Kao, M. Y. Wang, S. H., Lo, D. Y., Lai, T. Y. Kan, L. S. and Chiou, Y. Y. (2011). Toxicological and immunomodulatory assessments of botryosphaeran (β-glucan) produced by Botryosphaeria rhodina RCYU 30101, 49, 910-916.
Wells-Knecht, K. J., Zyzak, D. V., Litchfield, J. E., Thorpe, S. R., Baynes, J. W. (1995). Mechanism of autoxidative glycosylation: Identification of glyoxal and arabinose as intermediates in autoxidative modification of proteins by glucose. Biochem., 34, 3702-3709.
Wrick, K. L. (1994), The potential role of functional foods in medicine and public health, in Functional Foods: Designer Foods, Pharmafoods, Nutraceuticals, ed by Goldberg I. Chapman & Hall, New York, pp 480-494.
Ye, X. J., Ng, T. B. and Nagai, R. (2010). Inhibitory effect of fermentation byproducts on formation of advanced glycation end-products. Food Chem., 121, 1039-1045.
Yen, G. C., Chen, H. Y. (1995) Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. of Agri. and food Chem., 43, 27-32.
Yamaguchi, F., Ariga, T., Yoshimura, Y. and Nakazawa, H. (2000). Antioxidative and anti- glycation activity of garcinol from Garcinia indica fruit rind. J. Agric. Food Chem, 48, 180-185.
Zoecklein, B. W., Fugelsang, K. C., Gump, B. H. and Nury, F. S. (1990) Production wine analysis. Van Nostrrand Reinhold. New York

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔