跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/01/21 12:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝書瑜
研究生(外文):Shu-Yu Hsieh
論文名稱:乳用山羊之αs1酪蛋白基因型分佈
論文名稱(外文):Distribution of αs1-Casein Genotype in Dairy Goat
指導教授:洪炎明博士吳建平博士
指導教授(外文):Yan-Ming Horng, Ph. D.Chean-Ping Wu, Ph. D.
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:動物科學系研究所
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
中文關鍵詞:山羊αs1酪蛋白乳熱安定性酒精安定性
外文關鍵詞:αs1-casein of goatheat stability of milkethanol stability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:227
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究之目的在利用聚合酶連鎖反應-限制酶切割片段長度多態性(PCR-RFLP)與對偶基因特異性聚合酶連鎖反應(AS-PCR)針對山羊αs1酪蛋白進行基因分型,以得知台灣乳羊之αs1酪蛋白基因多態性,另進行羊乳酒精及熱安定性檢測,探討αs1酪蛋白基因多態性與羊乳酒精及熱安定性之關聯。採集160頭雜交乳用山羊之血液並萃取基因組DNA,利用PCR-RFLP與AS-PCR檢測αs1酪蛋白基因型,可得到下列11種基因型:AA、AE、AF、A01、EE、EF、EN、E01、FF、F01及N01,基因型頻率分別為0.13、0.13、0.29、0.02、0.02、0.19、0.01、0.03、0.13、0.04及0.01,以AF基因型出現之頻率最高(0.29),N01基因型之頻率最低(0.01);對偶基因則以αs1酪蛋白F對偶基因出現之頻率最高(0.40),顯示台灣雜交乳用山羊普遍帶有αs1酪蛋白F對偶基因。αs1酪蛋白AF、EF、FF及F01基因型之羊乳蛋白質經SDS-PAGE可得到大小約23 kDa之蛋白質特異片段,顯示此片段可做為SDS-PAGE篩選αs1酪蛋白F對偶基因之特異蛋白質。另採集正值泌乳期之74頭經產及26頭初產母羊,總計100頭雜交山羊之羊乳,分別進行酒精(35-65%)及熱安定性(90-150°C)檢測發現,平均酒精安定性為47.7±5.1%,平均熱安定性則為108.2±4.9°C,兩者具有正相關(p<0.05, r=0.29658),顯示酒精安定性可做為羊乳熱安定性之依據。經產及初產母羊方面,初產母羊之羊乳酒精及熱安定性皆極顯著低於經產母羊(p<0.001),顯示分娩胎次可能會影響羊乳酒精及熱安定性,其影響機制仍有待後續研究。αs1酪蛋白基因型方面,不同αs1酪蛋白基因型之羊乳酒精及熱安定性雖未達顯著水準(p>0.05),但帶有F對偶基因之αs1酪蛋白基因型(AF、EF及FF基因型)具有較高之羊乳酒精及熱安定性,αs1酪蛋白F對偶基因可作為熱安定性乳羊之篩選基因。
The purpose of this study is to investigate the αs1-casein gene polymorphisms in Taiwan dairy goats were analyzed by polymerase chain reaction-restriction enzyme fragment length polymorphism (PCR-RFLP) and allele-specific polymerase chain reaction (AS-PCR). The ethanol and heat stability of goat milk were also detected to investigate the relationship with αs1-casein genotype. Genomic DNA isolated in blood samples from 160 dairy goats was detected for genotypes of αs1-casein gene (CSN1S1) by PCR-RFLP and AS-PCR. Eleven αs1-casein genotypes were found: AA, AE, AF, A01, EE, EF, EN, E01, FF, F01 and N01. The frequencies of these genotypes were 0.13, 0.13, 0.29, 0.02, 0.02, 0.19, 0.01, 0.03, 0.13, 0.04 and 0.01, respectively. The most common genotype was AF (0.29), and the least common was N01 (0.01). In CSN1S1 alleles, the frequency of F allele (0.40) was the highest than others, which showed that CSN1S1 F allele was the most common allele of all examined dairy goats. Since SDS-PAGE revealed that the milk of AF, EF, FF and F01 genotypes had a specific protein fragment at about 23 kDa, the fragment could become a specific protein for selecting CSN1S1 F. Milk collected from 100 milking dairy goats, including 74 does and 25 maiden does, for detection of ethanol and heat stability revealed ethanol concentrations of ranging from 35 to 65% and temperatures of ranging from 90 to 140°C. The average ethanol and heat stability of milks were 47.7±5.1% and 108.2±4.9°C, respectively. Ethanol stability also correlated with heat stability (p&lt;0.05, r=0.29658), , so ethanol stability is in accordance with heat stability of goat milk. The ethanol and heat stability in maiden does were both significantly lower than in does (p&lt;0.001), which showed that parity may affect the ethanol and heat stability of goat milk. However, the associated mechanisms require further study. In αs1-casein genotype, the ethanol and heat stability had no significantly difference between different αs1-casein genotypes (p>0.05), but the ethanol and heat stability of the genotype with F allele (AF, EF and FF genotype) were both higher than others. These comparison results showed that CSN1S1 F could be a selected gene for dairy goat of heat stability.
目錄
頁次
中文摘要…………………………………………………………...…....II
英文摘要…………………………………………………………...…...III
圖次………………………………………………………………...…VIII
表次…………………………………………………………………...IX
前言……………………………………………………………1
壹、文獻探討..............................................................................................3
 一、乳中酪蛋白之合成與特性..............................................................3
(一) 酪蛋白之合成.....................................................................3
(二) 酪蛋白之特性.....................................................................3
 二、酪蛋白膠粒結構之模型..................................................................4
   (一) Coat-core models................................................................4
(二) 次膠粒/次單元模型.........................................................5
(三) 內部結構模型.....................................................................5
 三、羊乳酪蛋白膠粒..............................................................................6
四、山羊αs1酪蛋白基因多態性.............................................................8
(一) αs1酪蛋白A、B及C對偶基因(高表現量) .........................8
(二) αs1酪蛋白E對偶基因(中表現量) ....................................10
(三) αs1酪蛋白D及F對偶基因(低表現量) ............................10
(四) αs1酪蛋白01及N對偶基因(無表現量) .........................10
五、山羊αs1酪蛋白基因多態性檢測.................................................11
(一) 限制酶片段長度多態性....................................................11
(二) 對偶基因特異性聚合酶連鎖反應...................................12
(三) 其他方法………………...................................................12
六、羊乳熱安定性……......................................................................13
(一) αs1酪蛋白基因多態性及αs1酪蛋白含量...........................14
(二) pH值..................................................................................15
(三) 磷酸鹽、酪蛋白及乳清蛋白含量.....................................15
(四) 生乳保存方式...................................................................16
七、羊乳酒精安定性…......................................................................16
貳、材料與方法……................................................................................18
一、山羊αs1酪蛋白基因型及表現型………….…............................18
(一) 試驗樣本之採集………...................................................18
(二) 基因組DNA萃取及定量……………….......................18
(三) αs1酪蛋白基因分型…………………...............................22
(四) 統計分析….………..........................................................31
(五) SDS-PAGE……………….................................................32
二、羊乳酒精及熱安定性..................................................................35
(一) 試驗樣品之採集………….………................................37
(二) 羊乳酒精安定性…………….…………........................37
(三) 羊乳熱安定性……………...........................................37
(四) 統計分析….………….……...........................................37
参、結果與討論........................................................................................39
一、山羊αs1酪蛋白基因多態性……….............................................39
(一) PCR-RFLP……….…......................................................39
(二) AS-PCR……….…..........................................................43
(三) αs1酪蛋白基因型……….…............................................49
(四) αs1酪蛋白基因頻率.........................................................51
(五) 蛋白質電泳………….....................................................55
二、羊乳酒精及熱安定性……..........................................................57
(一) 羊乳酒精及熱安定性之相關性……….…....................57
(二) 分娩胎次與羊乳酒精及熱安定性之關聯.....................58
(三) αs1酪蛋白基因型與羊乳酒精及熱安定性之關聯.........58
肆、結論....................................................................................................64
參考文獻………………………………………………….……………65




圖次
頁次
圖 1 山羊αs1酪蛋白變異之演化…………………...…………...….....7
圖 2 山羊αs1酪蛋白基因型與表現型檢測之試驗流程…….............19
圖 3 檢測山羊αs1酪蛋白對偶基因之示意圖…...……………...…...24
圖 4 山羊αs1酪蛋白A對偶基因之部分序列……………….............25
圖 5 山羊αs1酪蛋白A對偶基因之部分序列………….…...............28
圖 6 山羊αs1酪蛋白對偶基因第12個介入子之序列及引子位置....30
圖 7 SDS-PAGE分析之試驗流程………………………...................33
圖 8 羊乳酒精及熱安定性測定之試驗流程……….…………..…...36
圖 9 利用PCR-RFLP檢測山羊αs1酪蛋白對偶基因之示意圖..…....40
圖 10 山羊αs1酪蛋白基因經由PCR增殖所得之片段以XmnI限制酶切割之產物電泳圖………………………………...………......42
圖 11 利用AS-PCR檢測山羊αs1酪蛋白對偶基因之示意圖..…........44
圖 12 利用αs1 19F及αs1 19R引子針對山羊基因組DNA增殖αs1酪蛋白對偶基因之PCR產物電泳圖………………………..….......46
圖 13 利用αs1 12F、αs1 12R及αs1 01引子針對山羊基因組DNA增殖αs1酪蛋白對偶基因之PCR產物電泳圖………..…………......48
圖 14 不同αs1酪蛋白基因型之羊乳SDS-PAGE…..……....................56

表次
頁次
表 1 山羊αs1酪蛋白變異/對偶基因之差異…………………..…........9
表 2 山羊αs1酪蛋白基因分型之檢測方法………....………...……..23
表 3 山羊αs1酪蛋白基因型之PCR產物與限制酶切割片段長度....50
表 4 160頭雜交泌乳山羊之αs1酪蛋白基因型頻率………..…....…52
表 5 160頭雜交泌乳山羊之αs1酪蛋白對偶基因頻率…………..…53
表 6 比較不同文獻之αs1酪蛋白對偶基因頻率結果………….....…54
表 7 初產及經產母羊羊乳酒精及熱安定性之一般線性分析結果..59
表8 不同αs1酪蛋白基因型羊乳酒精及熱安定性之一般線性分析結
果………………….………………………...….………….……62

王世國。2002。山羊乳中αs1、αs2、β及κ等酪蛋白之多態性與乳熱安定性間之關聯。碩士論文。國立台灣大學畜產學研究所。
王尚平。2005。山羊乳中游離鈣離子濃度與酒精安定性之研究。碩士論文。國立屏東科技大學畜產系。
王雅芳。1996。生羊乳中還原牛乳之檢測。碩士論文。國立台灣大學畜產學研究所。
Ahmed, S. 2006. Identification of Egyptian goat αs1-casein alleles using PCR-RFLP method. Int. J. Dairy Sci. 1:27-31.
Ambrosoli, R. 1988. Content of αs1-casein and coagulation properties in goat milk. J. Dairy Sci. 71:24-28.
Anema, S. G., and D. J. Stanley. 1998. Heat-induced, pH-dependent behaviour of protein in caprine milk. Int. Dairy J. 8:917-923.
Bauman, D. E., I. H. Mather, R. J. Wall, and A. L. Lock. 2006. Major advances associated with the biosynthesis of milk. J. Dairy Sci. 89:1235-1243.
Bevilacqua, C., P. Ferranti, G. Garro, C. Veltri, R. Lagonigro, C. Leroux, E. Pietrolà, F. Addeo, F. Pilla, L. Chianese, and P. Martin. 2002. Interallelic recombination is probably responsible for the occurrence of a new αs1-casein variant found in the goat species. Eur. J. Biochem. 269:1293-1303.
Bouhallab, S., N. Leconte, Y. L. Graet, and A. Garem. 2002. Heat-induced coagulation of goat milk: modification of the environment of the casein micelles by membrane processes. Lait 82:673-681.
Brignon, G., M. F. Mahé, B. R. Dumas, J. C. Mercier, and F. Grosclaude. 1990. Two of the three genetic variants of goat αs1-casein which are synthesized at a reduced level have an internal deletion possibly due to altered RNA splicing. Eur. J. Biochem. 193:237-241.
Brignon, G., M. F. Mahé, F. Grosclaude, and B. Ribadeau-Dumas. 1989. Sequence of caprine alpha s1-casein and characterization of those of its genetic variants which are synthesized at a high level, alpha s1-CnA, B and C. Protein Seq. Data Anal. 2:181-188.
Caroli, A., F. Chiatti, S. Chessa, D. Rignanese, E. M. Ibeagha-Awemu, and G. Erhardt. 2007. Characterization of the casein gene complex in West African goats and description of a new αs1-casein polymorphism. J. Dairy Sci. 90:2989-2996.
Carroll, R. J., M. P. Thompson, and H. M. Farrell. 1970. Formation and structure of casein micelles in lactating mammary tissue. 28th Annu. Proc. EMSA p. 150.
Clark, S., and J. W. Sherbon. 2000. Alphas1-casein, milk composition and coagulation properties of goat milk. Small Rumin. Res. 38:123-134.
Clark, S., and J. W. Sherbon. 2000. Genetic variants of alphas1-CN in goat milk: breed distribution and associations with milk composition and coagulation properties. Small Rumin. Res. 38:135-143.
Cosenza, G., A. Pauciullo, D. Gallo, L. Colimoro, A. D’Avino, A. Mancusi, and L. Ramunno. 2008. Genotyping at the CSN1S1 locus by PCR-RFLP and AS-PCR in a Neapolitan goat population. Small Rumin. Res. 74:84-90.
Cosenza, G., R. Illario, A. Rando, P. D. Gregorio, P. Masina, and L. Ramunno. 2003. Molecular characterization of the goat CSN1S101 allele. J. Dairy Res. 70:237-240.
Davies, D. T., and J. C. D. White. 1958. The relation between the chemical composition of milk and the ethanol. J. Dairy Res. 25:256-266.
Dettori, M. L., G. M. Vacca, V. Carcangiu, M. Pazzola, M. C. Mura, and A. M. Rocchigiani. 2009. A reliable method for characterization of the goat CSN1S1 E allele. Livest. Sci. 125:105-108.
Farrell, H. M. 1976. Models for casein micelle formation. J. Dairy Sci. 56:1195-1206.
Farrell, H. M., E. L. Malin, E. M. Brown, and P. X. Qi. 2006. Casein micelle structure: what can be learned from milk synthesis and structural biology? Curr. Opin. Colloid Interface Sci. 11:135-147.
Feligini, M., S. Frati, V. C. Curik, A. Brambilla, P. Parma, I. Curik, G. F. Greppi, and G. Enne. 2005. Caprine αs1-casein polymorphism: characterization of A, B, E and F variants by means of various biochemical and molecular techniques. Food Technol. Biotechnol. 43:123-132.
Ferranti, P., F. Addeo, A. Malorni, L. Chianese, C. Leroux, and P. Martin. 1997. Differential splicing of pre-messenger RNA produces multiple forms of mature caprine αs1-casein. Eur. J. Biochem. 249:1-7.
Fox, P. F., and M. C. T. Hoynes. 1976. Heat stability characteristics of ovine, caprine and equine milks. J. Dairy Res. 43:433-442.
Garnier, J., and B. Ribadeau-Dumas. 1970. Structure of the casein micelle: a proposed model. J. Dairy Res. 37:493-504.
Grosclaude, F., M. F. Mahé, G. Brignon, L. D. Stasio, and R. Jeunet. 1987. A mendelian polymorphism underlying quantitative variations of goat αs1-casein. Genet. Sel. Evol. 19:399-412.
Guo, M. R., Z. Li, J. Qu, L. Jin, and P. S. Kindsted. 1998. Ethanol stability of goat’s milk. Int. Dairy J. 8:57-60.
Haenlein, G. F. W., and Park, Y. W. Handbook of Milk of Non-bovine Mammals. 2006. Ames, Iowa: Blackwell Pub p.41.
Holt, C. 1992. Structure and stability of bovine casein micelles. Adv. Protein Chem. 43:63-151.
Horne, D. S. 1997. Ethanol stability. In: P. F. Fox (Ed.) Advanced Dairy Chemistry Volume 1. Proteins. pp. 657-689. Published by Blackie Academic and Profession, London.
Horne, D. S. 1998. Casein interactions: casting light on the black boxes, the structure in dairy products. Int. Dairy J. 8:171-177.
Horne, D. S. 2006. Casein micelle structure: model and muddles. Curr. Opin. Colloid Interface Sci. 11:148-153.
Horne, D. S., and D. D. Muir. 1990. Alcohol and heat stability of milk protein. J. Dairy Sci. 73:3613-3626.
Horne, D. S., and T. G. Parker. 1980. The pH sensitivity of the ethanol stability of individual cow milks. Neth. Milk Dairy J. 34:126-130.
Horne, D. S., T. G. Park, W. J. Donnelly, and D. T. Davies. 1986. Factors affecting the ethanol stability of bovine milk. VII. Lactational and compositional effects. J. Dairy Res. 53:407-417.
Jaubert, A., Ch. Durier, A. Kobilinsky, and P. Martin. 1999. Structural organization of the goat casein micelle: effect of the physico-chemical environment (pH, temperature, ionic strength) on its mineral and protein composition. Int. Dairy J. 9:369-370.
Jordana, J., M. Amills, E. Diaz, C. Angulo, J. M. Serradilla, and A. Sanchez. 1996. Gene frequencies of caprine αs1-casein polymorphism in Spanish goat breeds. Small Rumin. Res. 20:215-221.
Kumar, A., P. K. Rout, A. Mandal, and R. Roy. 2007. Identification of the CSN1S1 allele in Indian goats by the PCR-RFLP method. Animal 1:1099-1104.
Kusza, S., G. Veress, S. Kukovics, A. Jávor, A. Sanchez, A. Angiolillo, and Z. Bősze. 2007. Genetic polymorphism of αs1- and αs2-caseins in Hungarian milking goats. Small Rumin. Res. 68:329-332.
Leroux, C., N. Mazure, and P. Martin. 1992. Mutations away from splice site recognition sequences might cis-modulate alternative splicing of goat αs1-casein transcripts. J. Biol. Chem. 267:6147-6157.
Leroux, C., P. Martin, M. F. Mahé, H. Levéziel, and J. C. Mercier. 1990. Restriction fragment length polymorphism identification of goat αs1-casein alleles: a potential tool in selection of individuals carrying alleles associated with a high level protein synthesis. Anim. Genet. 21:341-351.
Marletta, D., A. Criscione, S. Bordonaro, A. M. Guastella, and G. D’Urso. 2007. Casein polymorphism in goat’s milk. Lait 87:491-504.
Marletta, D., S. Bordonaro, A. M. Guastella, A. Criscione, and G. D’Urso. 2005. Genetic polymorphism of the calcium sensitive caseins in sicilian Girgentana and Argentata dell’Etna goat breeds. Small Rumin. Res. 57:133-139.
Martin, P., M. O. Bousquet, and F. Grosclaude. 1999. Genetic polymorphism of caseins: a tool to investigate casein micelle organization. Int. Dairy J. 9:163-171.
Montilla, A., and M. M. Calvo. 1997. Goat’s milk stability during heat treatment: effect of pH and phosphates. J. Agric. Food Chem. 45:931-934.
Morgan, F., S. Micaul, and J. Fauquant. 2001. Combined effect of whey protein and αs1-casein genotype on the heat stability of goat milk. Int. J. Dairy Technol. 54: 64-68.
Morr, C. V. 1967. Effect of oxalate and urea upon ultracentrifugation properties of raw and heat skim milk casein micelles. J. Dairy Sci. 50:1744-1751.
Neveu, C., A. Riaublanc, G. Miranda, J. F. Chich, and P. Martin. 2002. Is the apocrine milk secretion process observed in the goat species rooted in the perturbation of the intracellular transport mechanism induced by defective alleles at the αs1-Cn locus. Reprod. Nutr. Dev. 42:163-172.
Parry, R. M., and R. J. Carroll. 1969. Location of κ-casein in milk micelles. Biochim. Biophys. Acta. 194:138-150.
Payens, T. A. J. 1966. Association of caseins and their possible relation to structure of casein micelle. J. Dairy Sci. 49:1317-1324.
Pérez, M. J., C. Leroux, A. S. Bonastre, and P. Martin. 1994. Occurrence of a LINE sequence in 3’ UTR of the goat αs1-casein E-encoding allele associated with reduced protein synthesis level. Gene 147:179-187.
Phadungath, C. 2005. Casein micelle structure: a concise review. Songklanakarin J. Sci. Technol. 27:201-212.
Pierre, A., F. Michel, and L. Zahoute. 1999. Composition of casein micelles in relation to size in goat milks with A and null αs1-casein variants. Int. Dairy J. 9:179-182.
Pierre, A., F. Michel, and Y. Le Graёt. 1995. Variation in size of goat milk casein micelles related to casein genotype. Lait 75:489-502.
Pierre, A., F. Michel, Y. Le Graёt, and L. Zahoute. 1998. Casein micelle size in relation with casein composition and αs1, αs2, β and κ casein contents in goat milk. Lait 78:591-605.
Ramunno, L., G. Cosenza, A. Rando, A. Pauciullo, R. Illario, D. Gallo, D. D. Berardino, and P. Masina. 2005. Comparative analysis of gene sequence of goat CSN1S1 F and N alleles and characterization of CSN1S1 transcript variants in mammary gland. Gene 335:289-299.
Ramunno, L., G. Cosenza, M. Pappalardo, N. Pastore, D. Gallo, P. D. Gregorio, and P. Masina. 2000. Identification of the goat CSN1S1F allele by means of PCR-RFLP method. Anim. Genet. 31:333-343.
Raynal, K., and F. Remeuf. 2000. Effect of storage at 4°C on the physicochemical and renneting properties of milk: a comparison of caprine, ovine and bovine milks. J. Dairy Res. 67:199-207.
Raynal-Ljutovac, K., T. Massouras, and M. Barbosa. 2004. Goat milk and heat treatments. S. Afr. J. Anim. Sci. 34:173-175.
Raynal-Ljutovac, K., Y. W. Park, F. Gaucheron, and S. Bouhallab. 2007. Heat stability and enzymatic modifications of goat and sheep milk. Small Rumin. Res. 68:207-220.
Rose, D. 1969. A proposed model of micelle structure in bovine milk. Dairy Sci. Abstr. 31:171-175.
Sánchez, A., H. Ilahi, E. Manfredi, and J. M. Serradilla. 2005. Potential benefit from using the αs1-casein genotype information in a selection scheme for dairy goats. J. Anim. Breed. Genet. 122:21-29.
Serradilla, J. M. 2003. The goat αs1-casein gene: A paradigm of the use of a major gene to improve milk quality? Options Méditerranéennes, Série A, 55:99-106.
Singh, H. 2004. Heat stability of milk. J. Soc. Dairy Technol. 57:11-119.
Slattery, C. W., and R. Evard. 1973. A model for the formation and structure of casein micelles from subunit of variable composition. Biochim. Biophys. Acta, Prot. Struct. Mol. Enzymol. 317:529-538.
Sztankόová, Z., T, Kott, V. Czerneková, G. Dudková, V. Mátlová, and J. Soldát. 2006. A new allele specific polymorphism chain reaction method (AS-PCR) for detection of the goat CSN1S101 allele. Small Rumin. Res. 66:282-285.
Sztankόová, Z., V. Mátlová, and G. Malá. 2007. Genetic polymorphism at the CSN1S1 gene in two Czech goat breeds. Czech J. Anim. Sci. 52:199-202.
Tziboula, A. 1997. Casein diversity in caprine milk and its relation to technological properties: heat stability. Int. J. Dairy Technol. 50:134-138.
Tziboula, A., and D. S. Horne. 1999. The role of αs1-casein in the structure of caprine casein micelles. Int. Dairy J. 9:173-178.
Walstra, P. 1999. Casein sub-micelles: do they exist? Int. Dairy J. 9:189-192.
Waugh, D. F., and R. W. Nobel. 1965. Casein micelles. Formation and structure. II. J. Am. Chem. Soc. 87:2246-57.
Zullo, A., C. M. A. Barone, L. Chianese, P. Colatruglio, M. Occidente, and D. Matassion. 2005. Protein polymorphisms and coagulation properties of Cilentana goat milk. Small Rumin. Res. 58:223-230.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top