王世國。2002。山羊乳中αs1、αs2、β及κ等酪蛋白之多態性與乳熱安定性間之關聯。碩士論文。國立台灣大學畜產學研究所。王尚平。2005。山羊乳中游離鈣離子濃度與酒精安定性之研究。碩士論文。國立屏東科技大學畜產系。王雅芳。1996。生羊乳中還原牛乳之檢測。碩士論文。國立台灣大學畜產學研究所。Ahmed, S. 2006. Identification of Egyptian goat αs1-casein alleles using PCR-RFLP method. Int. J. Dairy Sci. 1:27-31.
Ambrosoli, R. 1988. Content of αs1-casein and coagulation properties in goat milk. J. Dairy Sci. 71:24-28.
Anema, S. G., and D. J. Stanley. 1998. Heat-induced, pH-dependent behaviour of protein in caprine milk. Int. Dairy J. 8:917-923.
Bauman, D. E., I. H. Mather, R. J. Wall, and A. L. Lock. 2006. Major advances associated with the biosynthesis of milk. J. Dairy Sci. 89:1235-1243.
Bevilacqua, C., P. Ferranti, G. Garro, C. Veltri, R. Lagonigro, C. Leroux, E. Pietrolà, F. Addeo, F. Pilla, L. Chianese, and P. Martin. 2002. Interallelic recombination is probably responsible for the occurrence of a new αs1-casein variant found in the goat species. Eur. J. Biochem. 269:1293-1303.
Bouhallab, S., N. Leconte, Y. L. Graet, and A. Garem. 2002. Heat-induced coagulation of goat milk: modification of the environment of the casein micelles by membrane processes. Lait 82:673-681.
Brignon, G., M. F. Mahé, B. R. Dumas, J. C. Mercier, and F. Grosclaude. 1990. Two of the three genetic variants of goat αs1-casein which are synthesized at a reduced level have an internal deletion possibly due to altered RNA splicing. Eur. J. Biochem. 193:237-241.
Brignon, G., M. F. Mahé, F. Grosclaude, and B. Ribadeau-Dumas. 1989. Sequence of caprine alpha s1-casein and characterization of those of its genetic variants which are synthesized at a high level, alpha s1-CnA, B and C. Protein Seq. Data Anal. 2:181-188.
Caroli, A., F. Chiatti, S. Chessa, D. Rignanese, E. M. Ibeagha-Awemu, and G. Erhardt. 2007. Characterization of the casein gene complex in West African goats and description of a new αs1-casein polymorphism. J. Dairy Sci. 90:2989-2996.
Carroll, R. J., M. P. Thompson, and H. M. Farrell. 1970. Formation and structure of casein micelles in lactating mammary tissue. 28th Annu. Proc. EMSA p. 150.
Clark, S., and J. W. Sherbon. 2000. Alphas1-casein, milk composition and coagulation properties of goat milk. Small Rumin. Res. 38:123-134.
Clark, S., and J. W. Sherbon. 2000. Genetic variants of alphas1-CN in goat milk: breed distribution and associations with milk composition and coagulation properties. Small Rumin. Res. 38:135-143.
Cosenza, G., A. Pauciullo, D. Gallo, L. Colimoro, A. D’Avino, A. Mancusi, and L. Ramunno. 2008. Genotyping at the CSN1S1 locus by PCR-RFLP and AS-PCR in a Neapolitan goat population. Small Rumin. Res. 74:84-90.
Cosenza, G., R. Illario, A. Rando, P. D. Gregorio, P. Masina, and L. Ramunno. 2003. Molecular characterization of the goat CSN1S101 allele. J. Dairy Res. 70:237-240.
Davies, D. T., and J. C. D. White. 1958. The relation between the chemical composition of milk and the ethanol. J. Dairy Res. 25:256-266.
Dettori, M. L., G. M. Vacca, V. Carcangiu, M. Pazzola, M. C. Mura, and A. M. Rocchigiani. 2009. A reliable method for characterization of the goat CSN1S1 E allele. Livest. Sci. 125:105-108.
Farrell, H. M. 1976. Models for casein micelle formation. J. Dairy Sci. 56:1195-1206.
Farrell, H. M., E. L. Malin, E. M. Brown, and P. X. Qi. 2006. Casein micelle structure: what can be learned from milk synthesis and structural biology? Curr. Opin. Colloid Interface Sci. 11:135-147.
Feligini, M., S. Frati, V. C. Curik, A. Brambilla, P. Parma, I. Curik, G. F. Greppi, and G. Enne. 2005. Caprine αs1-casein polymorphism: characterization of A, B, E and F variants by means of various biochemical and molecular techniques. Food Technol. Biotechnol. 43:123-132.
Ferranti, P., F. Addeo, A. Malorni, L. Chianese, C. Leroux, and P. Martin. 1997. Differential splicing of pre-messenger RNA produces multiple forms of mature caprine αs1-casein. Eur. J. Biochem. 249:1-7.
Fox, P. F., and M. C. T. Hoynes. 1976. Heat stability characteristics of ovine, caprine and equine milks. J. Dairy Res. 43:433-442.
Garnier, J., and B. Ribadeau-Dumas. 1970. Structure of the casein micelle: a proposed model. J. Dairy Res. 37:493-504.
Grosclaude, F., M. F. Mahé, G. Brignon, L. D. Stasio, and R. Jeunet. 1987. A mendelian polymorphism underlying quantitative variations of goat αs1-casein. Genet. Sel. Evol. 19:399-412.
Guo, M. R., Z. Li, J. Qu, L. Jin, and P. S. Kindsted. 1998. Ethanol stability of goat’s milk. Int. Dairy J. 8:57-60.
Haenlein, G. F. W., and Park, Y. W. Handbook of Milk of Non-bovine Mammals. 2006. Ames, Iowa: Blackwell Pub p.41.
Holt, C. 1992. Structure and stability of bovine casein micelles. Adv. Protein Chem. 43:63-151.
Horne, D. S. 1997. Ethanol stability. In: P. F. Fox (Ed.) Advanced Dairy Chemistry Volume 1. Proteins. pp. 657-689. Published by Blackie Academic and Profession, London.
Horne, D. S. 1998. Casein interactions: casting light on the black boxes, the structure in dairy products. Int. Dairy J. 8:171-177.
Horne, D. S. 2006. Casein micelle structure: model and muddles. Curr. Opin. Colloid Interface Sci. 11:148-153.
Horne, D. S., and D. D. Muir. 1990. Alcohol and heat stability of milk protein. J. Dairy Sci. 73:3613-3626.
Horne, D. S., and T. G. Parker. 1980. The pH sensitivity of the ethanol stability of individual cow milks. Neth. Milk Dairy J. 34:126-130.
Horne, D. S., T. G. Park, W. J. Donnelly, and D. T. Davies. 1986. Factors affecting the ethanol stability of bovine milk. VII. Lactational and compositional effects. J. Dairy Res. 53:407-417.
Jaubert, A., Ch. Durier, A. Kobilinsky, and P. Martin. 1999. Structural organization of the goat casein micelle: effect of the physico-chemical environment (pH, temperature, ionic strength) on its mineral and protein composition. Int. Dairy J. 9:369-370.
Jordana, J., M. Amills, E. Diaz, C. Angulo, J. M. Serradilla, and A. Sanchez. 1996. Gene frequencies of caprine αs1-casein polymorphism in Spanish goat breeds. Small Rumin. Res. 20:215-221.
Kumar, A., P. K. Rout, A. Mandal, and R. Roy. 2007. Identification of the CSN1S1 allele in Indian goats by the PCR-RFLP method. Animal 1:1099-1104.
Kusza, S., G. Veress, S. Kukovics, A. Jávor, A. Sanchez, A. Angiolillo, and Z. Bősze. 2007. Genetic polymorphism of αs1- and αs2-caseins in Hungarian milking goats. Small Rumin. Res. 68:329-332.
Leroux, C., N. Mazure, and P. Martin. 1992. Mutations away from splice site recognition sequences might cis-modulate alternative splicing of goat αs1-casein transcripts. J. Biol. Chem. 267:6147-6157.
Leroux, C., P. Martin, M. F. Mahé, H. Levéziel, and J. C. Mercier. 1990. Restriction fragment length polymorphism identification of goat αs1-casein alleles: a potential tool in selection of individuals carrying alleles associated with a high level protein synthesis. Anim. Genet. 21:341-351.
Marletta, D., A. Criscione, S. Bordonaro, A. M. Guastella, and G. D’Urso. 2007. Casein polymorphism in goat’s milk. Lait 87:491-504.
Marletta, D., S. Bordonaro, A. M. Guastella, A. Criscione, and G. D’Urso. 2005. Genetic polymorphism of the calcium sensitive caseins in sicilian Girgentana and Argentata dell’Etna goat breeds. Small Rumin. Res. 57:133-139.
Martin, P., M. O. Bousquet, and F. Grosclaude. 1999. Genetic polymorphism of caseins: a tool to investigate casein micelle organization. Int. Dairy J. 9:163-171.
Montilla, A., and M. M. Calvo. 1997. Goat’s milk stability during heat treatment: effect of pH and phosphates. J. Agric. Food Chem. 45:931-934.
Morgan, F., S. Micaul, and J. Fauquant. 2001. Combined effect of whey protein and αs1-casein genotype on the heat stability of goat milk. Int. J. Dairy Technol. 54: 64-68.
Morr, C. V. 1967. Effect of oxalate and urea upon ultracentrifugation properties of raw and heat skim milk casein micelles. J. Dairy Sci. 50:1744-1751.
Neveu, C., A. Riaublanc, G. Miranda, J. F. Chich, and P. Martin. 2002. Is the apocrine milk secretion process observed in the goat species rooted in the perturbation of the intracellular transport mechanism induced by defective alleles at the αs1-Cn locus. Reprod. Nutr. Dev. 42:163-172.
Parry, R. M., and R. J. Carroll. 1969. Location of κ-casein in milk micelles. Biochim. Biophys. Acta. 194:138-150.
Payens, T. A. J. 1966. Association of caseins and their possible relation to structure of casein micelle. J. Dairy Sci. 49:1317-1324.
Pérez, M. J., C. Leroux, A. S. Bonastre, and P. Martin. 1994. Occurrence of a LINE sequence in 3’ UTR of the goat αs1-casein E-encoding allele associated with reduced protein synthesis level. Gene 147:179-187.
Phadungath, C. 2005. Casein micelle structure: a concise review. Songklanakarin J. Sci. Technol. 27:201-212.
Pierre, A., F. Michel, and L. Zahoute. 1999. Composition of casein micelles in relation to size in goat milks with A and null αs1-casein variants. Int. Dairy J. 9:179-182.
Pierre, A., F. Michel, and Y. Le Graёt. 1995. Variation in size of goat milk casein micelles related to casein genotype. Lait 75:489-502.
Pierre, A., F. Michel, Y. Le Graёt, and L. Zahoute. 1998. Casein micelle size in relation with casein composition and αs1, αs2, β and κ casein contents in goat milk. Lait 78:591-605.
Ramunno, L., G. Cosenza, A. Rando, A. Pauciullo, R. Illario, D. Gallo, D. D. Berardino, and P. Masina. 2005. Comparative analysis of gene sequence of goat CSN1S1 F and N alleles and characterization of CSN1S1 transcript variants in mammary gland. Gene 335:289-299.
Ramunno, L., G. Cosenza, M. Pappalardo, N. Pastore, D. Gallo, P. D. Gregorio, and P. Masina. 2000. Identification of the goat CSN1S1F allele by means of PCR-RFLP method. Anim. Genet. 31:333-343.
Raynal, K., and F. Remeuf. 2000. Effect of storage at 4°C on the physicochemical and renneting properties of milk: a comparison of caprine, ovine and bovine milks. J. Dairy Res. 67:199-207.
Raynal-Ljutovac, K., T. Massouras, and M. Barbosa. 2004. Goat milk and heat treatments. S. Afr. J. Anim. Sci. 34:173-175.
Raynal-Ljutovac, K., Y. W. Park, F. Gaucheron, and S. Bouhallab. 2007. Heat stability and enzymatic modifications of goat and sheep milk. Small Rumin. Res. 68:207-220.
Rose, D. 1969. A proposed model of micelle structure in bovine milk. Dairy Sci. Abstr. 31:171-175.
Sánchez, A., H. Ilahi, E. Manfredi, and J. M. Serradilla. 2005. Potential benefit from using the αs1-casein genotype information in a selection scheme for dairy goats. J. Anim. Breed. Genet. 122:21-29.
Serradilla, J. M. 2003. The goat αs1-casein gene: A paradigm of the use of a major gene to improve milk quality? Options Méditerranéennes, Série A, 55:99-106.
Singh, H. 2004. Heat stability of milk. J. Soc. Dairy Technol. 57:11-119.
Slattery, C. W., and R. Evard. 1973. A model for the formation and structure of casein micelles from subunit of variable composition. Biochim. Biophys. Acta, Prot. Struct. Mol. Enzymol. 317:529-538.
Sztankόová, Z., T, Kott, V. Czerneková, G. Dudková, V. Mátlová, and J. Soldát. 2006. A new allele specific polymorphism chain reaction method (AS-PCR) for detection of the goat CSN1S101 allele. Small Rumin. Res. 66:282-285.
Sztankόová, Z., V. Mátlová, and G. Malá. 2007. Genetic polymorphism at the CSN1S1 gene in two Czech goat breeds. Czech J. Anim. Sci. 52:199-202.
Tziboula, A. 1997. Casein diversity in caprine milk and its relation to technological properties: heat stability. Int. J. Dairy Technol. 50:134-138.
Tziboula, A., and D. S. Horne. 1999. The role of αs1-casein in the structure of caprine casein micelles. Int. Dairy J. 9:173-178.
Walstra, P. 1999. Casein sub-micelles: do they exist? Int. Dairy J. 9:189-192.
Waugh, D. F., and R. W. Nobel. 1965. Casein micelles. Formation and structure. II. J. Am. Chem. Soc. 87:2246-57.
Zullo, A., C. M. A. Barone, L. Chianese, P. Colatruglio, M. Occidente, and D. Matassion. 2005. Protein polymorphisms and coagulation properties of Cilentana goat milk. Small Rumin. Res. 58:223-230.