(3.238.88.35) 您好!臺灣時間:2021/04/10 20:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:方蓉
研究生(外文):Rung Fang
論文名稱:定位數量性狀基因座之分位數迴歸法
論文名稱(外文):Quantile Regression Methods for Mapping Quantitative Trait Loci
指導教授:曾信嘉曾信嘉引用關係
指導教授(外文):Shinn-Jia Tzeng
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:農藝學系研究所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:50
中文關鍵詞:重抽法區間定位分位數迴歸數量性狀基因座分位數迴歸
外文關鍵詞:Bootstrapping methodInterval mappingRegression quantileQTLSurvival analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:118
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
有許多定位數量性狀基因座(quantitative trail loci; QTL)的統計方法已被廣泛地討論與發展,包括有使用傳統或廣義線性模式、Cox比例風險模式(Cox’s proportional hazards model)和加速失敗時間模式(accelerated failure time model)等。而分位數迴歸模式(quantile regression model)在評估數量性狀之遺傳效應時,具有很大的彈性,但以此模式為主的區間定位,卻不常見於文獻中之討論。本文考慮區間定位的分位數迴歸法,發展QTL效應與位置偵測之統計推論,並且分析一筆感染Listeria Monocytogenes老鼠存活時間的實際資料,用以說明文中所建議的統計方法。
Most statistical models for mapping quantitative trail loci (QTLs) have been extensively discussed and developed, including traditional or generalized linear models, Cox’s proportional hazards models and accelerated failure time models, etc. Quantile regression models offer great flexibility in assessing genotype effects on quantiles of quantitative trail, but little work has done on the interval-mapping through the quantile model. This paper considers quantile regression methodologies for interval-mapping and develops statistical inferences for the effect and location of QTL. An analysis of the Listeria Monocytogenes mice data is provided to illustrate our proposed methods.
表目錄………………………………………………………………………...……...iii
圖目錄………………………………………………………………………………..iv
摘要……………………………………………………………………...…………….v
ABSTRACT…………………………………………………………….………….…vi
第一章 前言..…………………………………………………………………………1
第二章 文獻回顧………..……………………………………………………………6
2.1 數量性狀基因座定位法的演進……………………………………….……6
2.2 簡單線性迴歸分析…………………………………………………….……8
2.3 簡單區間定位法 …………………………………………………….……10
2.4 複迴歸分析…..……………………………………………………….……12
2.5 綜合區間定位法..…………………………………………………….……13
2.6 多重區間定位法..…………………………………………………….……17
2.7 BC與F2族群的產生流程與遺傳結構..…………………………………20
2.8 互換率與遺傳距離..………………………………………………………23
2.9 存活分析.……..……………………………………………………………28
第三章 統計方法..……..……………………………………………………………29
第四章 資料分析..……..……………………………………………………………33
4.1 實例介紹……..………………………………………….…………………33
4.2 分析結果..…………………………………………………………….……40
第五章 結論…………………………………………………………………………44
參考文獻 ……………………………………………………………………………46

參考文獻
江欣容、劉清。2007。有限差分近似法在QTL定位上最大概似估計值變異矩陣估算上之應用。作物、環境與生物資訊 4:201-214。
高振宏。2000。對試驗族群進行QTL定位的統計方法評介。中國統計
學報。38(1):1-36。
張永漢。2001。QTL多區間在雙變量資料上之應用。台灣大學碩士論文。
劉清、盧傳熙。1997。QTL定位與分析上之最大概似估算。中華農藝。7:293-309。
劉清、陳柏仰。1999。數量性狀基因座定位法在卜瓦松分布資料上之應用。中華
農藝。9:127-141。
蘇秀媛、蘇志雄、王秀玲。2000。以存活分析探討溫度對種子發芽之影響。中華
農藝。10:71-82。
蘇秀媛、黃怡菁、蘇志雄。2001。溫度對鴨舌草種子發芽之影響。中華農藝。11:
139-146。
蘇秀媛、黃怡菁、謝鑫能。2003。溫度對種子發芽之區間設限存活分析。中華農
藝。13:142-149。
蘇秀媛、蘇志雄、謝鑫能。2005。右方設限長期存活資料比率之研究。作物、環
境與生物資訊。2:95-104。
蘇秀媛、蘇志雄、謝鑫能。2006。長期存活資料比率之統計分析。作物、環境與生物資訊。3:337-344。
Bennett, S. 1983. Analysis of survival data by the proportional odds model. Statist in Medicine. 2:273-277.
Boyartchuk, V. L., K. W. Broman, R.E. Mosher and W. Dietrick. 2001. Multigenic control of Listeria Monocytogenes susceptibility in mice. Nat. Genet. 27: 259-260.
Broman K.W. 2003. Mapping quantitative trait loci in the case of a spike in the phenotype distribution. Genetics. 163: 1169-1175.
Cheng J. Y. and S. J. Tzeng. 2009. Parametric and semiparametric methods for mapping quantitative trait loci. Comp. Stat. Data Anal. 53: 1843-1849.
Diao G. and D.Y. Lin. 2005. Semiparametric methods for mapping quantitative trait loci with censored data. Biometrics. 61: 789-798.
Falconer D.S. and T. F. C. Mackay. 1996. Introduction to quantitative genetics, 4th
edition. Longman, England.
Fisher R. A. 1918. The correlation between relatives on the supposition of mendelian
inheritance. Trans. Roy. Soc. Edinb. 52: 399-433.
Gao, Y. M. and J. Zhu. 2007. Mapping QTLs with digenic epistasis under multiple
encironments and predicting hetrrosis based on QTL effects. Theor. Appl. Genet.
115: 325-333.
Hanson W. D. and H. F. Robinson. 1963. Statistical genetics and plant.
Hill W. G. and T. F. C. Mackay. 1989. Evolution and animal breeding. CAB
international, Wallingford, UK.
Jansen, R. C. 1993. Interval mapping of multiple quantitative trait loci. Genetics. 135: 205-211.
Jiang, C. J. and Z. B. Zeng. 1995. Multiple trait analysis of genetic mapping for
quantitative trait loci. Genetics. 140: 1111-1127.
Kao, C. H., Z. B. Zeng and R. D. Teasdale. 1999. Multiple interval mapping for
quantitative trait loci. Genetics. 152: 1203-1216.
Koenker R. and G. S. Bassett. 1978. Regression quantiles. Econometrica. 46: 33-50.
36: 383-393.
Koenker R. and V. D. Orey. 1987. Computing regression quantiles. Appl. Statist.
Lander, E. S. and D. Botstein. 1989. Mapping mendelian factors underlying
quantitative traits using RFLP linkage maps. Genetics. 121: 185-199.
Limin Peng and Jason P. Fine. 2009. Competing risks quantile regression. American
Statistical Association. 1440-1452.
Limin Peng and Yijian Huang. 2008. Survival analysis with quantile regression
models. American Statistical Association. 637-649.
Lush J. L. 1937. Animal breeding plans. Iowa State University Press, Ames.
Mayo O. 1980. The theory of plant breeding. Clarendon Press, Oxford, UK.
Mu Y, and X. He. 2007. Power transformation toward a linear regression quantile. J. Amer. Statist. Assoc. 102: 269-279.
Peng, L, and Y. Huang. 2008. Survival analysis based on quantile regression models. J. Amer. Statist. Assoc. 103: 637-649.
Portnoy S. 2003. Censored quantile regression. J. Amer. Statist. Assoc. 98: 1001-1012.
Powell J. L. 1986. Censored regression quantiles. J. Econometrics. 32: 143-155.
Roger Koenker and Gilbert Bassett. 1987. Regression quantiles. Econometrica.
46: 33-50.
Soller, N. and T. Brody. 1976. On the power of experimental designs for the detection
of linkage between marker loci and quantitative loci in crosses between inbred
lines. Theor. Appl. Genet. 47: 35-39.
Stam, P. 1991. Some aspects of QTL analysis, in proceedings of the eighth meeting of
the eucarpia section biometrics on plant breeding. BRNO, July. 1991.
Wang, D. L., J. Zhu, Z. K. Li and A.H. Paterson. 1999. Mapping QTLs with epistatic
effects and QTL×environment interactions by mixed linear model approaches.
Theor. Appl. Genet. 99: 1225-1264.
Yin G. and J. Cai. 2005. Quantile regression models with multivariate failure time data. Biometrics. 61: 151-161.
Yin G, and D. Zeng and H. Li. 2008. Power-transformed linear quantile regression with censored data. J. Amer. Statist. Assoc. 103: 1214-1224.
Zeng, Z. B. 1993. Theoretical basos for separation of multiple linked gene effects in
mapping of quantitative trait loci. Proc. Natl. Acad. Sci. USA. 90: 10972-10976.
Zeng, Z. B. 1994. Precision mapping of quantitative traits loci. Genetics.
136: 1457-1468.
Zeng, Z. B., J. Liu, L. F. Stam, C. H. Kao, J. M. Mercer and C. C. Laurie. 2000.
Genetic architecture of a morphological shape difference between two drosophila
species. Genetics. 154: 299-310.
Zhou W. 2011. A weighted quantile regression for randomly truncated data. Comp. Stat. Data Anal. 55: 554-566.
Zou, F., J. P. Fine, J. Hu and D. Y. Lin. 2004. An efficient resampling method for
assessing genome-wide statistical significance in mapping quantitative trait loci.
Genetics. 168: 2307-2316.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔