跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/27 10:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾燁毅
研究生(外文):Yeh-Yi Chung
論文名稱:巴豆乙醇萃取物抗黴及抑菌性之研究
論文名稱(外文):Antifungal and Antibacterial Activities of Ethanolic Extracts from Croton tiglium L
指導教授:林翰謙林翰謙引用關係
指導教授(外文):Han Chien Lin
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:林產科學暨家具工程學系研究所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
中文關鍵詞:巴豆氣相層析質譜分析儀 (GC-MS)抗黴性最低抑制濃度 (MIC)抑菌性
外文關鍵詞:Croton tigliumGas Chromatography-Mass Spectrophotometer (GC-MS)Antifungal ActivityMinimum Inhibitory Concentration (MIC)Antibacterial Activity
相關次數:
  • 被引用被引用:3
  • 點閱點閱:300
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的係以台灣傳統藥用植物-巴豆 (Croton tiglium L.) 之根、莖、葉及種子等各部位為試材,測其含水率,然經冷浸法或熱迴流萃取法取得其乙醇萃取液及測定其 pH 值、顏色變化及收率,且利用氣相層析質譜分析儀 (Gas Chromatography-Mass Spectrophotometer, GC/MS) 分析巴豆各部位之主成分,藉以探討其對常見於文物之黴菌,諸如:黑麴黴 (Aspergillus niger)、黃麴黴 (Aspergillus flavus)、綠色木黴 (Trichoderma viride) 與自然落菌時之抗黴性,且以其不同濃度萃取物測定不同黴菌之最低抑制濃度 (Minimum Inhibitory Concentration, MIC),並將萃取液添加於糊劑進行抗黴應用試驗;然又以其探討病原菌,諸如:金黃色葡萄球菌 (Staphylococcus aureaus)、枯草桿菌 (Bacillus subtilis)、大腸桿菌 (Escherichia col)、大腸桿菌 (Escherichia col) 及綠膿桿菌 (Pseudomonas aeruginosa) 等之抑菌性。
基本性質方面,以葉部含水率最高,為 71.94 %。各部位萃取液 pH 值大致呈偏弱鹼性,其值介於 6.38 - 8.49,而最高者為巴豆莖部乙醇之熱迴流萃取液,其 pH 值為 8.49。顏色變化由巴豆各部位於不同萃取法所得萃取液之 △E* 值得知,介於 1.18 – 44.04,且各部位萃取液隨濃度增加而有偏黃綠色之現象。經冷浸法或熱迴流萃取法取得之乙醇萃取液收率介於 1.51 – 10.51 %,其中以熱迴流萃取之葉部最高,為 10.51 %。
經 GC/MS 分析巴豆各部位乙醇萃取物之主成分可分為:酯類、酸類、胺類、醇類及酚類等,其相對含量分別為 10.13 - 78.04 %、4.95 - 20.40 %、0.00 - 83.04 %、0.00 - 3.15 % 及 1.58 - 1.86 % 等。酯類化合物為亞油酸乙酯 (Linoleic acid ethyl ester) 及油酸乙酯 (Ethyl oleate) 等,其相對含量最高者為巴豆種子經乙醇冷浸法之萃取物,值為 26.84 % 及 13.21 %,其次為巴豆根部經乙醇冷浸法萃取物,其值為 3.46 % 及 10.84 %。以酸類化合物而言,各部位均分析出棕櫚酸 (Palmitic acid) 之成分,最高者為葉部經熱迴流萃取法者,其值為 29.91 %,而油酸 (Oleic acid) 部分則以根部經乙醇冷浸法者之相對含量最高,其次為根部之熱迴流萃取物及種子經冷浸法者,其值分別為 4.88 %、4.54 % 及 4.22 %。以胺類化合物而言,除經冷浸法之種子者無此化合物外,其餘者皆具油酸酰胺 (Oleamide) 之成分,最高者為莖部經乙醇熱迴流法者,其值為 70.56 %。醇類部分則以根部熱迴流萃取物之柏木醇 (Cedrol) 的相對含量最高,為 3.15 %。酚類者則以莖部熱迴流萃取物之 2,6- 二叔丁基對甲酚 (2,6-Di-tert-butyl-4-methylphenol) 的相對含量最高,為 1.86 %。
抗黴性結果得知,巴豆各部位無論經冷浸法或熱迴流萃取法所得之乙醇萃取物皆具有抗黴性,且對自然落菌及綠色木黴之抗黴性較佳,又知各乙醇萃取物於濃度 10 mg/mL 即具抗黴性。MIC 結果顯示,巴豆根部以熱迴流萃取法所得之乙醇萃取物具有較低的 MIC 值,且對黑麴黴而言,其值為最低 (0.78 mg/mL),最高者則為巴豆莖部以冷浸法所得者,其對綠色木黴之 MIC 值為 25 mg/mL。添加於糊劑之抗黴試驗結果顯示,無論莖或葉部之萃取液加入糊劑後進行抗黴試驗均具有抗黴效果,並於接種黑麴黴 56 天後觀察可知,葉部萃取液之黑麴黴生長率已達 100 %,而莖部者則為 50 %,其莖部者抑制黑麴黴生長程度較葉部者有 2 倍之多。以菌種而言,冷浸法之莖部萃取物以濃度 50 mg/mL,其接菌 56 天後,以自然落菌最佳 (10 %);黑麴黴次之 (20 %);黃麴黴則達 (35 %)。依成分分析及抗黴性試驗結果顯示,冷浸法之莖部萃取物其亞油酸乙酯及油酸乙酯含量為 11.2 %,優於葉部者之 4.54 %,因而推論添加膠料之抗黴應用試驗結果可知,莖部者較具抗黴性能。
抑菌試驗方面,各試材巴豆乙醇萃取液皆具有抑菌性,以莖部萃取部位者之抑制效果較佳,其中熱迴流萃取法對五種病原菌皆為完全抑制,並於巴豆莖部經熱迴流萃取法所得之乙醇萃取物於濃度 50 mg/mL 時,對枯草桿菌具有最佳抑制能力,其抑菌圈為 18.71 mm;而根部次之,其抑菌圈為 16.95 mm,又由其冷浸法所得者除濃度 10 mg/mL 外,其他濃度者皆為完全抑菌。另依成分分析及抑菌性試驗結果顯示,莖部乙醇萃取物之亞油酸乙酯及油酸乙酯等所佔相對含量達 11.2 %,而根部熱迴流法者則為 9.99 %,但葉部者之冷浸法及熱迴流萃取法為最低,分別為 4.54 % 及 0.00 %,由此推斷無論冷浸法或熱迴流萃取法所得莖部者之抑菌性對五種病原菌的效果較優於葉部者。
由上述結果得知,本研究所用巴豆於不同萃取方法所得各部萃取液對文物黴菌及對病原菌之抑菌性與其酯類成分的亞油酸乙酯、油酸乙酯及油酸等相對含量有關。

The objectives of this study were to use traditional medical plants, Croton tiglium L., as the experimental materials, in Taiwan. The specimens of Croton tiglium are included root, stem, leaves and seed. The basic properties of moisture content for each portion of Croton tiglium were investigated. The yield, pH value and color difference (△E*) of each portion of extracts obtained from the cold soaking processes or the hot backset refined methods with ethanol was measured. The main compounds of each portion of Croton tiglium were analyzed by using Gas Chromatography-Mass Spectrophotometer (GC/MS). The extracts were to investigate the antifungal (Aspergillus niger, Aspergillus flavus, trichoderma viride and air fungi particles) activities, to determine of Minimum Inhibitory Concentration (MIC) of the extracts with different concentrations for various fungi, and were used to combined with adhesives to carry out the antifungal tests; as well as to examine the antibacterial (Staphylococcus aureaus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa) activities.
As the results of the basic properties, leaves of Croton tiglium had the highest moisture content, 71.94 %. The pH value of each portion of Croton tiglium was from 6.38 to 8.49, and the highest one (8.49) was the stem of ethanolic extracts by using the hot backset refined methods. The extracts of color difference (△E*) with different extracted method obtained that the value was between 1.18 and 44.04, and it became yellowish green with the increase of the concentration. The yield, 1.51 – 10.51 %, of the ethanolic extracts by using the cold soaking processes or the hot backset refined methods was obtained and the leaves portion, 10.51 %, was the highest one.
By GC/MS analysis, the main compounds from each ethanolic extracts of Croton tiglium were included esters, acids, amines, alcohols and phenols, and their relatived contents were 10.13 - 78.04 %, 4.95 - 20.40 %, 0.00 - 83.04 %, 0.00 - 3.15 % and 1.58 - 1.86 %, respectively. The main compounds of the esters were linoleic acid ethyl ester and ethyl oleate. The highest one was the extracts of the seed portion, 26.84 % and 13.21 % and followed by the root, 3.46 % and 10.84 %, with the ethanolic cold soaking methods. For the acid compounds, the extracts of each portion were analyzed to the compounds of palmitic acid, and the highest one, 29.91 %, was the leaves extracts with the hot backset refined methods. The compounds of oleic acid was 4.88 %, 4.54 % and 4.22 % for the root extracts with the cold soaking processes, the root extracts with the hot backset refined methods, and the seed extracts with the cold soaking processes in that order. From the results of amine compounds, expect for the seed extracts with the cold soaking processes, the others of each portion obtained the compounds of oleamide, and the highest one, 70.56 %, was the stem extracts with the hot backset refined methods. For the compounds of alcohols, cedrol was obtained and its relative content was 3.15 %. From the results of phenol compounds, the highest one was 2,6-Di-tert-butyl-4-methylphenol from the stem extracts with the hot backset refined methods and its value was 1.86 %.
The results of the antifungal activities obtained that regardless of by using the cold soaking or the hot backset refined methods with ethanol, the antifungal activities of the Croton tiglium extracts of root, stem, leaves and seed was all effectiveness. These extracts were with a better antifungal activity to air fungi particles and Trichoderma viride, and each ethanolic extracts with 10 mg/mL concentration were effective to the antifungal activity. The results of the MIC showed that the root extracts of Croton tiglium by using the hot backset refined methods with ethanol had a lower MIC value, and for Aspergillus niger, it was the lowest value, 0.78 mg/mL. The highest one was the stem, using the cold soaking method, and the MIC value against Trichoderma viride was 25 mg/mL. The results of the antifungal tests with the adhesives showed that both the stems and leaves extracts after adding the extracts with the adhesives were antifungal effect, and the 56th days after inoculated with Aspergillus niger showed that the antifungal activities of the leaf extracts for Aspergillus niger growth rate were 100 %, but it was 50 % for the stem ones, indicating that the antifungal activities of the stem extracts to the growth rate of Aspergillus niger were two times of the leaves ones. For the type of fungi, the antifungal activities of the stem extracts, using the hot backset refined methods, with 50 mg/mL of the concentration for the 56th days after the inoculation, the best one was air fungi particles (10 %); followed by Aspergillus niger (20 %) and Aspergillus flavus amounted to (35 %). According to the results of the compounds and the antifungal activities, the stem extracts, using the ethanolic cold soaking methods, with 11.2 % of ethyl linoleate and ethyl oleate that was higher than the leaves ones with 4.45 %. Therefore, it is inferred that the antifungal activities of the stem extracts are better effectiveness.
The results of the antibacterial tests obtained that the extracts were all effective to antibacterial activity. The stem extracts, using the hot backset refined methods, were the best one with inhibitory completely to the antibacterial activity for five sorts of bacteria used, and at 50 mg/mL was the best effective to Bacillus subtilis, as well as the diameter of growth inhibition was 18.71 mm, following by the root ones, 16.95 mm, but not for the extracts by using the cold soaking method at 10 mg/mL. According to the results of the compounds and the antibacterial activities, the stem extracts, using the ethanolic cold soaking methods, with 11.2 % of ethyl linoleate and ethyl oleate that was higher than the leaves ones, regardless of by using the cold soaking or the hot backset refined methods with ethanol, with 4.45 % and 0.00 %. It is suggested the antibacterial activities of the stem extracts are effective to five sorts of bacteria used than these of the leaves ones.
The above results concluded that the antifungal and antibacterial activities of the extracts of each portion of Croton tiglium with different extractive method were concerned with the relative contents of ethyl linoleate, ethyl oleate and oleic acid.

摘要……………………………………………………………………...I
Abstract…………………………………………………………………V
目錄………………………………………………………………....IX
表目錄………………………………………………………...………XIII
圖目錄…………………………………………………………….....XVII
第一章 前言……………………………………………………………..1
第二章 文獻回顧………………………………………………………..6
一、藥用植物之發展現況……………………………………………...6
二、萃取技術………………………………………………………….14
三、巴豆之應用……………………………………………………….16
四、巴豆氣相層析質譜儀 (GC-MS) 分析.……………………………20
五、黴菌……………………………………………………………….24
(一) 黑麴黴 (Aspergillus niger)………………………………...24
(二) 黃麴黴 (Aspergillus flavus)………………………………..24
(三) 綠色木黴 (Trichoderma viride)……………………………24
(四) 自然落菌 (Air fungi particles)…………………………….25
六、紙質文物生物性劣化及防治方法………………………………..26
七、病原菌……………………………………………………………..30
(一) 金黃色葡萄球菌 (Staphylococcus aureaus)…………….30
(二) 枯草桿菌 (Bacillus subtilis)………………………………31
(三) 大腸桿菌 (Escherichia coli)………………………………31
(四) 綠膿桿菌 (Pseudomonas aeruginosa)……………………32
第三章 巴豆之基本性質與成分分析………………………………..34
一、材料與方法………………………………………………………..37
(一) 試驗材料…………………………………………………..37
(二) 試驗方法………………………………………………….37
1. 巴豆之乙醇萃取………………………………………37
2. 各試樣之代號…………………………………………..38
3. 巴豆各部位含水率之測定…………………………….40
4. 巴豆各部位乙醇萃取液pH值之測定…………………40
5. 濾紙浸漬巴豆各萃取液顏色變化之測定……….……..40
6. 巴豆乙醇萃取物收率之測定…………………………...41
7. 濾紙浸漬巴豆各萃取液重量增加率之測定…………...41
8. 巴豆各部位組成分之分析…………………………...42
(三) 統計分析…………………………………………………...43
二、結果與討論………………………………………………………..44
(一) 巴豆各部位之含水率……………………………………...44
(二) 巴豆各部位乙醇萃取液之 pH值………………………...44
(三) 濾紙浸漬巴豆各萃取液之顏色變化……………………...45
(四) 巴豆各部位乙醇萃取物之收率…………………………...46
(五) 濾紙浸漬巴豆各萃取液之重量增加率…………………...47
(六) 巴豆各部位之組成分…………………………………...49
三、結語………………………………………………………………..62
第四章 巴豆乙醇萃取物抗黴性之評估…………………………….65
一、材料與方法………………………………………………………..67
(一) 試驗材料…………………………………………………...67
(二) 試驗方法…………………………………………………...68
1. 抗黴性…………………………………………………...68
2. 最低抑制濃度 (MIC)…………………………………...70
3. 添加於糊劑之抗黴性應用……………………………...70
二、結果與討論………………………………………………………..72
(一) 抗黴性……………………………………………………...72
1. 萃取部位………………………………………………...72
2. 萃取液濃度……………………………………………...75
3. 萃取方法………………………………………………...77
4. 接菌菌種………………………………………………...79
(二) 最低抑制濃度……………………………………………...81
(三) 添加於糊劑之抗黴性應用………………………………...88
1. 萃取部位………………………………………………...88
2. 萃取液濃度……………………………………………...89
3. 萃取方法………………………………………………...91
4. 接菌菌種………………………………………………...92
5. 不同濕度環境…………………………………………...93
三、結語………………………………………………………………..95
第五章 巴豆乙醇萃取物抑菌性之評估…………………………….97
一、材料與方法………………………………………………………..100
(一) 試驗材料………………………………………………….100
(二) 試驗方法………………………………………………….101
(三) 統計分析………………………………………………….102
二、結果與討論………………………………………………………..103
(一) 抑菌性…………………………………………………….103
三、結語………………………………………………………………..107
第六章 結論………………………………………………………......109
參考文獻……………………………………………………………...113

1. 王聖予、李麗俐、吳秀玲、周啟馥。楊志元、陳建和 編譯 (1999) 最新醫用微生物學 (上)。藝軒圖書出版社。Murray, Rosenthal, Kobayashi, Pfaller 原著;陳豪勇鑑修。台北。pp. 209-283。
2. 方維倫 (1991) 應用微生物 (上)。復文書局。pp. 21-44。
3. 甘偉松 (1986) 藥用植物學。國立中國醫藥研究所。台北。pp. 10-15。
4. 朱兆文 (2006) 醫藥產業年鑑。生物技術開發中心。台北。pp. 20-25。
5. 江淑吟 (2007) 商標圖形及色彩對再認績效與產品評價影響之研究。銘傳大學設計管理研究所碩士論文。pp. 35-38。
6. 全國中草藥匯編。上冊。pp. 50-58。
7. 沈秀如 (2006) 巴西蘑菇安全性及抗氧化活性之評估。國立嘉義大學食品科學研究所碩士論文。pp. 88。
8. 弥宏、曲莉莉、任玉林 (2005) 超臨界萃取中藥白芷的化學成分氣相色譜質譜分析。分析化學 (FENXIHUAXUE) 研究簡報第3期。pp. 366-370。


9. 呼晴、殷麗君 (2007) 黄色毛霉腐乳的抗氧化性。中國實業大學食品科學與營養工程學院論文。pp. 14-17。
10. 邱如敏 (2004) 麝香草酚與白藜蘆醇抑菌特性之探討。國立嘉義大學食品科學研究所碩士論文。pp. 2,25-28。
11. 邱年永 (1991) 原色臺灣藥用植物圖鑑。南天書局出版社。pp. 56。
12. 林福文 (2003) 中草藥活性成分提取分離方法之簡介。食品工業期刊 35:35-41。
13. 吳映芳 (2005) 植物萃取液應用於紙質文物生物性危害防治之研究。國立嘉義大學農學院林產暨自然資源研究所碩士論文。pp. 16-26。
14. 林建宗、賴婉綺、蕭文鳳、王升陽 (2007) 柳杉心材精油對衣魚之忌避與致死活性之研究。中華林學季刊 40 (2): 251-260
15. 周霞麗 (2009) 2010台灣各產業景氣趨勢調查報告。台灣經濟研究院 (產經中心)。pp. 599-614。
16. 胡靜 (2007) 巴豆和巴豆霜揮發性成分的 GC-MS 分析。天津大學藥物科學與技術學院。pp. 464-465
17. 洪心容、黃世勳 (2004) 台灣鄉野藥用植物。文興出版社。台中。pp. 106-107。
18. 洪心容、黃世勳、黃啟睿 (2004) 趣談藥用植物 (上)。文興出版社。台中。pp. 36-37。
19. 徐漢卿 (1996) 植物學。中國實業出版社。pp. 40-42。
20. 徐雅芬 (2006) 全球植物藥產業概況及市場分析。農業生技產業季刊第五期。pp. 1-4。
21. 奚三彩 (1999) 文物保護技術與材料。雲林科技大學。pp. 16-35。
22. 許芳華 (2001) 黃芩抑菌性質及抑菌成分分離純化之研究。國立中興大學食品科學研究所碩士論文。pp. 18-60。
23. 夏滄琪、張豐吉 (2002) 紙質文物著生褐斑真菌類之分離與鑑別。林業研究季刊 24 (4): 29-44。
24. 夏滄琪 (2003a) 霉害紙質文物處理之探討。紙於至善-紙質科技文物保存維護手冊。pp. 40-61。
25. 夏滄琪 (2003b) 紙質文物霉害之防治。pp. 19-29。
26. 啟業書局 (1984) 中草藥製劑法。啟業書局。台北。pp. 165-167。
27. 陳家華、方曉明、朱堅、李曉紅、潘良文 (2004) 現代食品分析新技術。化學工業出版社。北京。pp. 73。
28. 陳江和 (2001) 安非他命及甲基安非他命光學異構物之氣相層析質譜鑑析。未出版碩士論文,中央警察大學鑑識科學研究所。pp. 1-5。
29. 陳業高、呂瑜平、丁中濤、畢韵梅 (2004) 植物化學成分。化學工業出版社。 pp. 121-123。
30. 陳亭亭、潘日南、許美智、倪戌江 (2009) 濫用藥物的檢驗分析及認證制度。臺灣警察專科學校警專學報。pp. 35-46。
31. 陳柏光 (2010) 不同溫度採集竹/木醋液抑菌性及初步安全性之評估。國立嘉義大學農學院林產科學暨家具工程研究所碩士論文。pp. 7-12。
32. 陳吉平 (1995) 食物病媒源。睿煜出版社。屏東。pp. 33-94。
33. 許育晏 (2008) 阿里山十大功勞與台灣黃蘗乙醇萃取液抗黴及抑菌性之研究。國立嘉義大學農學院林產暨自然資源研究所碩士論文。pp. 35-39。
34. 張慈映 (2004 a) 兩岸植物藥產業發展現況 (上)。工業技術研究院產業經濟與資訊服務中心。pp 1-15。
35. 黃忠村 (2004) 應用微生物 。復文書局。pp. 40-86。
36. 解惟棠 (2009) 典藏庫房菌相調查及幾丁聚醣抗黴性之探討。國立嘉義大學農學院林產科學研究所碩士論文。pp. 20-36。
37. 廖江川 (2002) 有毒植物學-概論與用藥安全。學安文化事業有限公司。台中。pp. 1-14。

38. 劉新裕、林俊義、張成國 (2002) 2002年藥用植物專輯。行政院農業委員會農業試驗所特刊第 98號、。pp. 1-9,45-187,218-249。
39. 劉毓芬(2006)以液相層析電噴灑游離法離子阱質譜儀建立濫用藥物在尿液樣本之廣篩方法。慈濟大學。pp. 10-42。
40. 劉湘、汪秋安 (2004) 天然產物化學。化學工業出版社。pp. 106-111。
41. 蔣玲艷、王林果、歐熳熳 (2008) 茶油抑菌效果的研究。玉林師範學院化學與生物學系。
42. 蔡新聲、陳忠川、李鎮宇、郭昭麟、羅淑芳 (2003) 台灣珍稀藥用植物。科學發展。364期。pp. 23-50。
43. 蔡忠庭 (2009) 不同溫度採集孟宗竹竹醋液抗氧化與抗脂肪氧化能力之研究。國立嘉義大學農學院林產科學系研究所碩士論文。pp. 12-14。
44. 應紹舜 (1992) 台灣木本植物彩色圖鑑。pp. 580
45. 顏國欽 (1997) 食品安全學。藝軒出版社。台北。pp. 51-52。
46. 魏璐雪 (2003) 中藥製劑分析。知音出版社。台北市。p.7。
47. 邊新鼎 (2004) 植物萃取物對非洲菊切花瓶插壽命和抑制細菌生長之研究。國立嘉義大學農學研究所碩士論文。pp. 3-34。

48. 謝寶全 (2000) 肉桂萃取液之抑菌作用。台灣農業化學與食品科學 38 (2): 184-193。
49. Abdul-Raouf, U. M., L. R. Beuchat and M. S. Ammar (1993) Survival and growth of Escherichia coli O157:H7 on salad vegetables. Applied and Environmental Microbiology 59: 1999-2006.
50. Al-Bari, M. A. A., M. A. Sayeed and M. S. Rahman (2006) Characterization and antimicrobial activities of a phenolic acid derivative produced by Streptomyces bangladeshiensis, a novel species collected in Bangladesh, Res. J. Med. and Med. Sci. 1: 77-81.
51. Akinpelu, D. A. and T. M. Onakoyo (2006) Antimicrobial activities of medicinal plants used in folklore remedies in Southwestern. Afr. J. Biotech 5 (11): 1078-1081.
52. Beuchat L. R. and A. D. Golden (1989) Antimicrobials occurring naturally in foods. Food Technol 1: 134-142.
53. Cowan, M. M. (1999) Plant products as antimicrobial agents. Clinical Microbiology Reviews 12: 564–582.
54. Carson, C. F., K. A. Hammer and T. V. Riley (1995) Broth micro-dilution method for determination of susceptibility of Escherichia coli and Staphylococcus aureus to the essential oil of Malaleuca alterifolia (Tea tree oil). Microbios 82: 181-185.
55. Chang, J. M. and T. H. Chen (2003) Bacterial food outbreaks in central Taiwan, 1991-2000. Journal of Food and Drug analysis 11: 53-59.
56. Essawi, T., M. Srour (2000) Screening of some Palestinian medicinal plants for antibacterial activity. Journal of Ethnopharmacology 70: 343-349
57. Gould, G. W. (1996) Bacteriocins: Natural antimicrobials from microorganism. In “New Method of Food Preservation”. Published by Blackie Academic and Professional, an imprint of Chapman and Hall. London. pp. 22-39.
58. Hasan M. F., R. Das, Alam Khan, M. S. Hossain and M. Rahman (2009) The Determination of Antibacterial and Antifungal Activities of Polygonum hydropiper (L.) Root Extract. Advances in Biological Research 3 (1-2): 53-56
59. Huxley, A. (1984) Green Inheritance: The World Wildlife Fund Book of Plants. Collins/Harvill, London.
60. Kutscha N. (1999) Trends in wood research and utilization Forest Products Journal 49 (7/8) : 12,16.
61. Lee, S. H., K. U. Chang, M. S. Su and H. D. Jang (2007) Effects of some Chinese medicinal plant extracts on five different fungi. Food Control 18 1547-1554.
62. Lin, H. C., Y. Murase, T. C. Shiah, G. S. Hwang, P. K. Chen and W. L. Wu (2008) Application of Moso Bamboo Vinegar with Different Collection Temperatures to Evaluate Fungi Resistance of Moso Bamboo Materials. J. Fac. Agr., Kyushu Unvi 53 (1): 107-113.
63. Matu, E. N. and J. V. Staden (2003) Antibacterial and Anti-inflammatory Activies of Some Plants Used for Medicinal Purposes in Kenya. Journal of Ethnopharmacology 87: 35-41.
64. McLafferty, F. W. (1997) Wiley Registry of Mass Spectral Data (6th ed.). New York:Wiley. pp. 1-5
65. Nilsen, Perf., and R. Rios (2000) Inhibition of fungal growth on bread by volatile components from spices and herbs, and the possible application in active packing, with special emphasis on mustard essential oil. International Journal of Food Microbiology 60: 219–229.
66. Norm, K. (1999) Trends in wood research and ntilization Forest Products. Journal. 49 (7/8): 12, 16.
67. Palombo, A. E. and S. J. Semple (2001) Antibacterial activity of traditional Australian medicinal plants. Journal of Ethnopharmacology 77: 151-157.
68. Pfleger, K., H. H. Maurer and A. Weber (2000) Mass Spectral Library of Drugs, Poisons, Pesticides and Their Metabolites. (3rd ed.). Oalo Alto. CA: Angilent Technologies.
69. Shelef, L. A., O. A. Naglik and D. W. Bogen (1980) Sensitivity of some common food-borne bacteria to the spices sage, rosemary, and allspice. Journal of Food Science 45: 1042-1044.
70. Saleem, Z. M. and K. S. Ai-Delaimy (1982) Inhibition of Bacillus cereus by garlic extract. Journal of Food Protection 45: 1007-1009.
71. Smith, P. A., J. Stewart and L. Fyfe (1998) Antimicrobial properties of plant essential oils and essences against important food-borne pathogens. Letters in Applied Microbiology 26: 118-122.


72. Tassou, C., K. Koutsoumanis and G. J. E. Nychas (2000) Inhibition of Salmonella enteritidis and Staphylococcus aureus in nutrient broth by mint essential oil. Food Research International 33: 273-280.
73. Valero, M. and M. C. Salmeroj (2003) Antibacterial activity of 11 essential oils against Bacillus cereus in tyndallized carrot broth. International Journal of Food Microbiology 85: 73-81.
74. Wong, P. Y. Y. and D. D. Kitts (2002) The eVects of herbal pre-seasoning on microbial and oxidative changes in irradiated beef steaks. Food Chemistry 76: 197-205.
75. Yildirim, A., A. Mavi, M. Oktay, A. A. Kara, O. F. Algur and V. Bilaloggu (2000) Comparison of antioxidant and antimicrobial activities of tilia (Tilia argentea Desf Ex DC), sage (Salvia triloba L.), and black tea (Camellia sinensis) extracts. Journal of Agricultural and Food Chemistry 48: 5030-5034.
76. Yasmin, L., M. H. Rashid, M. N. Uddin, M. S. Hossain, M. E. Hossain, and M. U. Ahmed. (2003) Use of neem extract in controlling root-knot nematode (Meloidogyne javanica) of sweet-gourd. Pakistan J. Plant Pathology 2: 161-168
77. Zaika, L. L. (1988) Spices and herbs: their antimicrobial activity and its determination. Journal of Food Safety 9: 97-118.
78. Zaika, L. L. and J. C. Kissinger (1981) Inhibitory and stimulatory effects of oregano on Lactobacillus plantarum and Pediococcus cerevisiae. Journal of Food Science 46: 1205-1210.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top