跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/17 21:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林詣喬
研究生(外文):Yi-Chiao Lin
論文名稱:胰島素阻抗模式下探討白藜蘆醇透過caveolin-1抑制血管平滑肌細胞移動隻機制
指導教授:翁慶豐翁慶豐引用關係
指導教授(外文):Ching-Feng Weng
學位類別:碩士
校院名稱:國立東華大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:82
中文關鍵詞:動脈粥樣硬化血管平滑肌細胞白藜蘆醇
外文關鍵詞:insulin resistancecaveolin-1
相關次數:
  • 被引用被引用:0
  • 點閱點閱:258
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
二型糖尿病患通常擁有胰島素阻抗的病徵,同時也是造成動脈粥樣硬化發生的高危險因子。動脈粥樣硬化發生過程中可發現內膜增厚(intima hyperplasia)的現象,而造成這種現象的最主要因素為血管平滑肌細胞的增生及遷移。先前的研究指出,Caveolin-1 (Cav-1) 基因缺失小鼠會有胰島素阻抗的發生,同時胰島素調控抗動脈粥樣硬化因子的功能也會喪失;而Cav-1為構成caveolae 的重要蛋白,負責調控細胞許多訊息傳遞路徑,且在血管平滑肌細胞中高度表現。當胰島素阻抗發生時,血管平滑肌細胞會活化MAPK pathway,此路徑之活化會提高細胞增生及移動能力進而增加動脈粥樣硬化發生的機率。白藜蘆醇 (Resveratrol) 是一種天然多酚類化合物,多酚類一直被認為具有抗氧化的能力,能保護心血管,降低心血管疾病的發生,但resveratrol對血管平滑肌細胞之移動作用並未清楚。實驗結果顯示,resveratrol能有效抑制血管平滑肌細胞的增生,同時發現能有效抑制血管平滑肌細胞的移動以基質金屬蛋白酶 (Matrix metalloproteinase, MMP)中MMP2的活性,而且resveratrol的抑制效果在Cav-1 KO VSMC中更加顯著。透過原子力顯微鏡觀察細胞型態發現;相對於WT,Cav-1 KO VSMC 有更多lamellipodia 及filopodia 表現。同樣在mRNA及蛋白質表現量方面,包含Rac-1, cdc42, C-SRC, IRS-1, Cav-1, MEKK1, MEKK4, p38MAPK,這些與血管平滑肌細胞移動能力有關的調控因子,在WT及Cav-1 KO VSMC之間確實存在著明顯的差異,同時resveratrol 能有效調控這些因子的表現量,因此本實驗結果顯示,Cav-1在內膜增生及動脈粥樣硬化發生過程中扮演的重要的角色且resveratrol 具有抗動脈粥樣硬化的潛力。
ABSTRACT I
CONTENT V
TABLE CONTENT VII
FIGURE CONTENT VII
ABBREVIATIONS IX
INTRODUCTION
Atherosclerosis and diabetes 1
Vascular smooth muscle cell 3
The role of insulin resistance and glucose in atherosclerosis 4
Lamellipodia and filopodia in cell migration 6
Caveolae and caveolin-1 7
RATIONALE AND SPECIFIC AIMS 11
RESEARCH DESIGN 13
MATERIALS AND METHODS
Animal feeding and diets 15
Intravenous glucose tolerance test 15
Resveratrol solution preparation 15
VSMC isolation and cell culture 16
Cell viability assay 17
Wound healing assay 18
Tapping-mode atomic force microscopy scanning 18
Gelatin zymography 19
Reverse transcription PCR (RT-PCR) 20
Western blotting 21
Statistical Analyses 21
RESULTS
Effect of caveolin-1 on Cav-1 KO mice 23
Effect of resveratrol on VSMC viability 23
Effect of glucose and resveratrol on VSMC migration 23
The role of Cav-1, resveratrol and glucose on VSMC mobility 24
The role of Cav-1, glucose and resveratrol on insulin resistance pathway 26
The role of Cav-1 and resveratrol on MMPs family and a-SMA expression 27
DISCUSSION
Part I The difference between WT and Cav-1 KO VSMC 29
Part II The effect of glucose on the migration of VSMC 32
Part III The effect of resveratrol on the migration of VSMC 34
CONCLUSIONS 39
FUTURE WORKS 41
REFERENCES 43
TABLES AND FIGURES 55
Abercrombie M, Heaysman JE & Pegrum SM. The locomotion of fibroblasts in culture. II. "RRuffling". Exp Cell Res 1970, 60: 437-444.

Abercrombie M, Heaysman JE & Pegrum SM. The locomotion of fibroblasts in culture. IV. Electron microscopy of the leading lamella. Exp Cell Res 1971, 67: 359-367.

Alexandrova AY, Arnold K, Schaub S, Vasiliev JM, Meister JJ, Bershadsky AD & Verkhovsky AB. Comparative dynamics of retrograde actin flow and focal adhesions: formation of nascent adhesions triggers transition from fast to slow flow. PloS One 2008, 3: e3234.

Arkell J & Jackson CJ. Constitutive secretion of MMP9 by early passage cultured human endothelial cells. Cell Biochem Funct 2003, 21: 381-386.

Asada H, Paszkowiak J, Teso D, Alvi K, Thorisson A, Frattini JC, Kudo FA, Sumpio BE & Dardik A. Sustained orbital shear stress stimulates smooth muscle cell proliferation via the extracellular signal-regulated protein kinase 1/2 pathway, J. Vasc. Surg 2005, 42: 772-780.

Bauer PM, Yu J, Chen Y, Hickey R, Bernatchez PN, Looft-Wilson R et al. Endothelialspecific expression of caveolin-1 impairs microvascular permeability and angiogenesis. Proc Natl Acad Sci USA 2005, 102: 204-209.
Bershadsky AD, Ballestrem C, Carramusa L, Zilberman Y, Gilquin B, Khochbin S, Alexandrova AY, Verkhovsky AB, Shemesh T & Kozlov MM. Assembly and mechanosensory function of focal adhesions: experiments and models. Eur J Cell Biol 2006, 85: 165-173.

Boulton TG, Nye SH, Robbins DJ, Ip NY, Radziejewska E, Morgenbesser SD, DePinho RA, Panayotatos N, Cobb MH & Yancopoulos GD. ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 1991, 65: 663-675.

Burgering BM & Coffer PJ. Protein kinase B (c-Akt) in phosphatidylinositol 3-OH kinase signal transduction. Nature 1995, 76: 599-602.

Campbell M, Allen WE, Silversides JA & Trimble ER. Glucose-induced phosphatidylinositol 3-kinase and mitogen activated protein kinase-dependent upregulation of the platelet derived growth factor-receptor potentiates vascular smooth muscle cell chemotaxis. Diabetes 2003, 52: 519-526.

Carlier MF, Le Clainche C, Wiesner S & Pantaloni D. Actin-based motility: from molecules to movement. Bioessays 2003, 25: 336-345.

Cavallaro A, Ainis T, Bottari C & Fimiani V. Effect of resveratrol on some activities of isolated and in whole blood human neutrophils. Physiol Res 2003, 52: 555-562.

Chen X, Kelemen SE & Autieri MV. Expression of granulocyte colony-stimulating factor is induced in injured rat carotid arteries and mediates vascular smooth muscle cell migration. Am J Physiol Cell Physiol 2005, 288: C81-86.

Chidlow JH Jr & Sessa WC. Caveolae, caveolins, and cavins: complex control of cellular signalling and inflammation. Cardiovascular Research 2010, 86: 219-225.

Cusi K, Maezono K, Osman A, Pendergrass M, Patti ME, Pratipanawatr T, DeFronzo RA, Kahn CR & Mandarino. Insulin resistance differentially affects the PI3-kinase and MAP kinase-mediated signaling in human muscle. J Clin Invest 2000, 105: 311-320.

Draznin B, Chang L, Leitner JW, Takata Y & Olefsky JM. Insulin activates p21Ras and guanine nucleotide releasing factor in cells expressing wild type and mutant insulin receptors. J Biol Chem 1993, 268: 19998-20001.

Donnelly LE, Newton R, Kennedy GE, Fenwick PS, Leung RH, Ito K, Russell RE & Barnes PJ. Anti-inflammatory effects of resveratrol in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2004, 287: L774-L783.

Döbereiner HG, Dubin-Thaler B, Giannone G, Xenias HS & Sheetz MP. Dynamic phase transitions in cell spreading. Phys Rev Lett 2004, 93: 108-105.

Fagerholm S, Ortegren U, Karlsson M, Ruishalme I & Stralfors P. Rapid insulin dependent endocytosis of the insulin receptor by caveolae in primary adipocytes. PLoS One 2009, 4: e5985.

Forbes JM, Yee LT, Thallas V, Lassila M, Candido R, Jandeleit-Dahm KA, Thomas MC, Burns WC, Deemer EK, Thorpe SR, Cooper ME & Allen TJ. Advanced glycation end product interventions reduce diabetes-accelerated atherosclerosis. Diabetes 2003, 53: 1813-1823.

Galis ZS & Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis. The good, the bad, and the ugly. Circ Res. 2002; 90: 251-262.

Geiger B, Spatz JP & Bershadsky AD. Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 2009, 10: 21-33.

George SJ & Dwivedi A. MMPs, cadherins, and cell proliferation. Trends Cardiovasc Med. 2004, 14: 100-105.

Giannone G, Dubin-Thaler BJ, Döbereiner HG, Kieffer N, Bresnick AR & Sheetz MP. Periodic lamellipodial contractions correlate with rearward actin waves. Cell 2004, 116: 431-443

Giannone G, Dubin-Thaler BJ, Rossier O, Cai Y, Chaga O, Jiang G, Beaver W, Döbereiner HG, Freund Y, Borisy G & Sheetz MP. Lamellipodial actin mechanically links myosin activity with adhesion-site formation. Cell 2007, 128: 561-575.

Giannone G & Sheetz MP. Substrate rigidity and force define form through tyrosine phosphatase and kinase pathways. Trends Cell Biol 2006, 16: 213-223.

Giannone G, Dubin-Thaler BJ, Döbereiner HG, Kieffer N, Bresnick AR & Sheetz MP. Periodic lamellipodial contractions correlate with rearward actin waves. Cell 2004, 116: 431-443.

Hall JL, Chatham JC, Eldar-Finkelman H & Gibbons GH. Upregulation of glucose metabolism during intimal lesion formation is coupled to the inhibition of vascular smooth muscle cell apoptosis. Role of GSK3. Diabetes 2001, 50: 1171-1179.

Hao H, Gabbiani G & Bochaton-Piallat ML. Arterial smooth muscle cell heterogeneity: implications for atherosclerosis and restenosis development. Arterioscler Thromb Vasc Biol 2003, 23: 1510-1520.

Hsueh WA & Law RE. Implications of insulin resistance and diabetes.
Am J Med. 1998, 105: 4S-14S.

Hsueh WA & Law RE. Insulin signaling in the arterial wall. Am J Cardiol 1999, 84: 21J-24J.

Jiang ZY, Lin Y-W, Clemont A, Feener EP, Hein KD, Igarashi M, Yamauchi T, White MF & King GL. Characterization of selective resistance to insulin signaling in the vasculature of obese Zucker (fa/fa) rats. J Clin Invest 1999, 104: 447-457.

Juhasz B, Varga B, Gesztelyi R, Kemeny-Beke A, Zsuga J & Tosaki A. Resveratrol: a multifunctional cytoprotective molecule. Curr Pharm Biotechnol 2010, 11: 810-8.

Le Clainche C & Carlier MF. Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiol Rev 2008, 88: 489-513.

Libby P, Ridker PM & Maseri A. Inflammation and atherosclerosis. Circulation 2002, 105: 1135-1143.

Lin CH & Forscher P. Growth cone advance is inversely proportional to retrograde F-actin flow. Neuron 1995, 14: 763-771.

Little PJ, Allen TJ, Hashimura K, Nigro J, Farrelly CA & Dilley RJ. High glucose potentiates mitogenic responses of cultured ovine coronary smooth muscle cells to platelet derived growth factor and transforming growth factor-1. Diabetes Res. Clin. Pract. 2003, 59: 93-101.

Loftus IM, Naylor AR, Bell PRF & Thompson MM. Matrix metalloproteinases and atherosclerotic plaque instability. Br J Surg. 2002, 89: 680-94.

Lorenz P, Roychowdhury S, Engelmann M, et al. Oxyresveratrol and resveratrol are potent antioxidants and free radical scavengers: effect on nitrosative and oxidative stress derived from microglial cells. Nitric Oxide 2003, 9: 64-76.

Machacek M & Danuser G. Morphodynamic profiling of protrusion phenotypes. Biophys J 2006, 90: 1439-1452.

McGill Jr HC, McMahan CA, Zieske AW, Sloop GD, Walcott JV, Troxclair DA, Malcom GT, Tracy RE & Oalmann MC. Associations of coronary heart disease risk factors with the intermediate lesion of atherosclerosis in youth. The Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Arterioscler Thromb Vasc Biol Strong JP 2000, 20: 1998-2004.

Medeiros NA, Burnette DT & Forscher P. Myosin II functions in actin-bundle turnover in neuronal growth cones. Nat Cell Biol 2006, 8: 215-226.
Mitchison TJ & Cramer LP. Actin-based cell motility and cell locomotion. Cell 1996, 84: 371-379.

Mogilner A & Oster G. Cell motility driven by actin polymerization. Biophys J 1996, 71: 3030-3045.

Montagnani M, Golovchenko I, Kim I, Koh GY, Goalstone ML, Mundhekar AN, Johansen M, Kucik DF, Quon MJ & Draznin B. Inhibition of phosphatidylinositol 3-kinase enhances mitogenic actions of insulin in endothelial cells. J Biol Chem 2002, 277: 1794-1799.

Mueck AO & Seeger H. Estrogens acting as cardiovascular agents: Direct vascular actions. Curr. Med. Chem. CardioVasc. Hematol. Agents 2004, 2: 35-42.

Muir R. Cardiovascular system. In: MacSween RNM, Whaley K, eds. Muir’s textbook of pathology. London: Hodder and Stoughton Ltd. 1992 Chap. 12. 13 th ed.

Murata T, Lin MI, Stan RV, Bauer PM, Yu J & Sessa WC. Genetic evidence supporting caveolae microdomain regulation of calcium entry in endothelial cells. J Biol Chem 2007, 282: 16631-16643.

Myers MG Jr, Backer JM, Sun XJ, Shoelson S, Hu P, Schlessinger J, Yoakim M, Schaffhausen B & White MF. IRS-1 activates phosphatidylinositol 3-kinase by associating with src homology 2 domains of p85. Proc Natl Acad Sci U S A 1992, 89: 10350-10354

Okamoto T, Engelman JA, Zhang X, Galbiati F, Volonte D, Sotgia F, Pestell RG, Minetti C, Scherer PE & Lisanti MP. Molecular genetics of the caveolin gene family: implications for human cancers, diabetes, Alzheimer disease, and muscular dystrophy. Biol Chem 1998, 273: 5419-5422.

O’Leary KA, Pascual-Tereasa SS, Needs PW, et al. Effect of flavonoids and vitamin E on cyclooxygenase-2 (COX-2) transcription. Mutat Res 2004, 551: 245-254.

Owens GK. Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 1995, 75: 487-517.

Owens GK, Kumar MS & Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev. 2004; 84: 767-801.

Pawlak K, Pawlak D, Mysliwiec M. Serum matrix metalloproteinase-2 and increased oxidative stress are associated with carotid atherosclerosis in hemodialyzed patients. Atherosclerosis 2007, 190: 199-204.

Pollard TD & Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments. Cell 2003, 112: 453-465.

Ponti A, Machacek M, Gupton SL, Waterman-Storer CM & Danuser G. Two distinct actin networks drive the protrusion of migrating cells. Science 2004, 305: 1782-1786.

Ray LB & Sturgill TW. Rapid stimulation by insulin of a serine/threonine kinase in 3T3–L1 adipocytes that phosphorylates microtubule-associated protein 2 in vitro. Proc Natl Acad Sci USA 1987, 84: 1502-1506.

Rensen SS, Doevendans PA & van Eys GJ. Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth Heart J. 2007, 15: 100-8.

Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993, 362: 801-809

Sasaoka T, Rose DW, Jhun BH, Saltiel AR, Draznin B & Olefsky JM. Evidence for a functional role of Shc proteins in mitogenic signalling induced by insulin, insulin-like growth factor-1, and epidermal growth factor. J Biol Chem 1994, 269: 13689-13694.

Schwartz SM, Virmani R & Rosenfeld ME. The good smooth muscle cells in atherosclerosis. Curr Atheroscler Rep. 2000, 2: 422-29.


Sharpe PC, Yue KK, Catherwood MA, McMaster D & Trimble ER. The effects of glucose-induced oxidative stress on growth and extracellular matrix gene expression of vascular smooth muscle cells. Diabetologia 1998, 41: 1210-1219.

Silva HS, Martins ML, Vilela MJ, Jaeger R & Kachar B. 1/f ruffle oscillations in plasma membranes of amphibian epithelial cells under normal and inverted gravitational orientations. Phys Rev E Stat Nonlin Soft Matter Phys 2006, 74: 041903.

Stary HC, Chandler AB, Glagov S, Guyton JR, Insull Jr W, Rosenfeld ME, Schaffer SA, Schwartz CJ & Wagner WD. A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 1994, 89: 2462-2478.

Sun XJ, Rothenberg P, Kahn CR, Backer JM, Araki E, Wilden PA, Cahill DA, Goldstein BJ & White MF. Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 1991, 352: 73-77.

Theriot JA & Mitchison TJ. Actin microfilament dynamics in locomoting cells. Nature 1991, 352: 126-131.


Wautier JL & Guillausseau PJ. Advanced glycation end products, their receptors and diabetic angiopathy. Diabetes Metab 2003, 27: 535-542.

Yamamoto M, Toya Y, Schwencke C, Lisanti MP, Myers MG Jr & Ishikawa Y. Caveolin is an activator of insulin receptor signalling. J Biol Chem 1998, 273: 26962-26968.

Yu J, Bergaya S, Murata T, Alp IF, Bauer MP, Lin MI et al. Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels. J Clin Invest 2006, 116: 1284-1291.

Zhao YY, Zhao YD, Mirza MK, Huang JH, Potula HH, Vogel SM et al. Persistent eNOS activation secondary to caveolin-1 deficiency induces pulmonary hypertension in mice and humans through PKG nitration. J Clin Invest 2009, 119: 2009-2018.

Zundel W, Swiersz LM & Giaccia A. Caveolin1-Mediated regulation of receptor tyrosine kinase-associated phosphatidylinositol 3-kinase activity by ceramide. Mol. Cell Biol 2000, 20: 1507-1514.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top