跳到主要內容

臺灣博碩士論文加值系統

(100.28.2.72) 您好!臺灣時間:2024/06/13 12:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林子鈞
研究生(外文):Lin-Tze chun
論文名稱:影響使用網路訂購系統因素之研究-以Yahoo!購物網為例
論文名稱(外文):The Study of Influencing Factors of Usage of Order-Processing System-An Empirical Study of Yahoo! Shopping Website
指導教授:池文海池文海引用關係蘇柏全蘇柏全引用關係
指導教授(外文):Wen-Hai ChihBo-Chiuan Su
學位類別:碩士
校院名稱:國立東華大學
系所名稱:企業管理學系
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:87
中文關鍵詞:訂購系統科技接受模式信任知覺風險社會影響
外文關鍵詞:Order-Processing SystemTechnology Acceptance ModelPerceived Easy of UsePerceived of UsefulnessTrustPerceived RiskSocial Influence
相關次數:
  • 被引用被引用:2
  • 點閱點閱:446
  • 評分評分:
  • 下載下載:83
  • 收藏至我的研究室書目清單書目收藏:0
網路科技為人類生活帶來了革命性的轉變,時至今日我們的生活幾乎無法離開網路,但是,每個人對網路領域有著不同的感受,由於過往文獻已證實,影響使用者感受的原因可以分為個人內在因素及來自生活周遭的外在因素,本研究以科技接受模式為立論核心,加入信任、知覺風險及社會影響等三個變數,並透過來自252位網路受訪者的問卷結果,以探討使用者於使用網路購物的訂購系統時,受到此三個變數影響的高低程度。
科技接受模式已是相當成熟的研究架構,過往相關的研究指出,當個體面對新的科技環境時,首先會考量到科技的易用性及有用性,以作為後續是否使用的重要依據,本研究的結果證實這一觀點是正確而且重要的,研究結果也確證,易用且有用是科技系統吸引使用者的第一步,不可輕忽。
本研究的實證結果也發現,訂購系統的使用者從產生使用意圖到實際使用的過程中,受到信任及社會影響的刺激,產生了高度的使用意願,並反映在大幅提昇的使用時間及頻率上,較令人意外的是,知覺風險對於使用者的使用意圖及行為都沒有顯著的影響力,最後,本研究以所得之驗證結果提出相關管理及後續研究的建議。
誌 謝 ii
中文摘要 iii
Abstract iii
目 錄 iii
圖目錄 iii
表目錄 iii
第一章 緒論 3
第一節 研究背景 1
第二節 研究動機 2
第三節 研究目的 4
第四節 研究重要性與貢獻 4
第五節 研究範圍與對象 5
第六節 研究流程 5
第二章 文獻探討 9
第一節 科技接受模式 9
第二節 知覺易用性及知覺有用性 3
第三節 信任及知覺風險 3
第四節 社會影響 3
第五節 使用意圖及實際使用 15
第三章 研究方法 3
第一節 研究架構及假說 19
第二節 研究變數操作性定義與衡量 20
第三節 問卷設計 3
第四節 資料蒐集方法 3
頁次
第五節 資料分析方法 3
第六節 共同方法變異問題之處理與檢測 3
第七節 問卷前測結果分析 30
第四章 資料分析 3
第一節 正式問卷發放與樣本敘述性統計分析 3
第二節 共同方法變異檢測 41
第三節 問卷效度與信度分析 43
第四節 整體結構模式分析 3
第五章 結論與建議 55
第一節 結論 55
第二節 討論 59
第三節 管理意涵與貢獻 60
第四節 研究限制與後續研究建議 63
參考文獻 3
附錄一、前測問卷 74
附錄二、英文原始量表 76
附錄三、前測共同方法變異檢測-探索性因素分析 78
附錄四、前測共同方法變異檢測-驗證性因素分析 79
附錄五、前測各構面量表收斂效度分析 81
附錄六、前測區別效度分析暨變數相關係數表 83
附錄七、前測各構面信度分析 84
附錄八、正式問卷 87
1. 行政院經濟建設委員會(CEPD),臺灣網路購物規模持續成長,http://www.cepd.gov.tw/m1.aspx?sNo=0012144。
2. 交通部電信總局臺灣網路資訊中心(TWNIC),2010 年臺灣寬頻網路使用調查報告,http://www.twnic.net.tw/download/200307/1001e.pdf。
3. 資訊工業策進會(FIND)產業情報研究所(MIC),2010臺灣線上購物市場規模3,583億元,http://www.iii.org.tw/service/3_1_4_c.aspx?id=127。
4. Yahoo!臺灣官方網站,http://www.yahoo.com.tw。
5. Amin, H. (2009), “An analysis of online banking usage intentions: An extension of the Technology Acceptance Model,” International Journal Business and Society, Vol. 10, No. 1, pp. 27-40.
6. Anderson, J. C. and Gerbing, D. W. (1988), “Structural equation modeling in practice: A review and recommended two-step approach,” Psychological Bulletin, Vol. 103, No. 3, pp. 411-423.
7. Avolio, B., Yammarino, F. J. and Bass, B. M. (1991), “Identifying common methods variance with data collected from a single source: An unresolved sticky issue,” Journal of Management, Vol. 17, No. 3, pp. 571-587.
8. Bagozzi, R. P. and Yi, Y. (1988), “On the evaluation of structural equation models,” Academic of Marketing Science, Vol. 16, No.1, pp.74-94.
9. Bentler, P. M. and Wu, E. J. C. (1993), EQS/Windows User Guide, BMDP Statistical Software, Los Angeles, CA.
10. Bronfman, N. C., Va´zquez, E. L., Gutie´rrez, V. V. and Cifuentes, L. A. (2008), “Trust, acceptance and knowledge of technological and environmental hazards in Chile,” Journal of Risk Research, Vol. 11, No. 6, pp. 755-773.
11. Chen, Y. H. and Barnes, S. (2007), “Initial trust and online buyer behaviour,” Industrial Management & Data, Vol. 107, No. 1, pp. 21-36.
12. Chiu, C. M., Huang, H. Y. and Yen, C. H. (2010), “Antecedents of trust in online auctions,” Electronic Commerce Research and Applications, Vol. 9, No. 2, pp. 148-159.
13. Chong, A. Y. L., Darmawan, N., Ooi, K. B. and Lin, B. (2010), “Adoption of 3G services among Malaysian consumers: An empirical analysis,” International Journal of Mobile Communications, Vol. 8, No. 2, pp. 129-149.
14. Christian, J. and Abrams, D. (2003), “The effects of social identification, norms and attitudes on use of outreach services by homeless people,” Journal of Community & Applied Social Psychology, Vol. 13, No. 2, pp. 138-157.
15. Comegys, C., Hannula, M. and Väisänen, J. (2009), “Effects of consumer trust and risk on online purchase decision-making: A comparison of Finnish and United States students,” International Journal of Management, Vol. 26, No. 2, pp. 295-308.
16. Corritore, C. L., Kracher, B. and Wiedenbeck, S. (2003), “On-line trust: Concepts, evolving themes, a model,” International Journal of Human-Computer Studies, Vol. 58, No. 6, pp. 737-758.
17. Davis, F. D. (1989), “Perceived usefulness, perceived ease of use, and user acceptance of information technology,” MIS Quarterly, Vol. 13, No. 3, pp. 319-339.
18. Davis, F. D., Bagozzi, R. P. and Warshaw, P. R. (1989), “User acceptance of compute technology: A comparison of two theoretical models,” Management Science, Vol. 35, No. 8, pp. 982-1003.
19. Devaraj, S., Easley, R. F. and Crant, J. M. (2008), “How does personality matter? Relating the five-factor model to technology acceptance and use,” Information Systems Research, Vol. 19, No. 1, pp. 93-105.
20. Fornell, C. and Larcker, D. F. (1981), “Evaluating structural equation models with unobservable variables and measurement error,” Journal of Marketing Research, Vol. 18, No. 1, pp. 39-50.
21. Gaski, J. F. and Nevin, J. R. (1985), “The differential effects of exercised and unexercised power sources in a marketing channel,” Journal of Marketing Research, Vol. 22, No. 2, pp. 130-142.
22. Gefen, D., Karahanna, E. and Straub, D.W. (2003), “Trust and TAM in online shopping: An integrated model,” MIS Quarterly, Vol. 27, No. 1, pp. 51-90.
23. Gewald, H. and Dibbern, J. (2009), “Risks and benefits of business process outsourcing: A study of transaction services in the German banking industry,” Information & Management, Vol. 46, No. 4, pp. 249-257.
24. Ha, S. and Stoel, L. (2009), “Consumer e-shopping acceptance: Antecedents in a Technology Acceptance Model,” Journal of Business Research, Vol. 62, No. 5, pp. 565-571.
25. Hair, J. F. Jr., Black, W. C., Babin, B. J. and Anderson, R. E. (2010), Multivariate Data Analysis (7th Ed.), Prentice Hall, Englewood Cliffs, NJ.
26. Hewson, C., Yule, P., Laurent, D. and Vogel, C. (2003), Internet Research Methods: A Practical Guide for the Social and Behavioral Sciences, Sage, London, UK.
27. Hsieh, J. J., Rai, A. and Keil, M. (2008), “Underatanding digital inequality: Comparing continued use behavioral models of the socio-economically advantaged and disadvantaged,” MIS Quarterly, Vol. 32, No. 1, pp. 97-126.
28. Hsu, C. L. and Lu, H. P. (2004), “Why do people play on-line games? An extended TAM with social influences and flow experience,” Information & Management, Vol. 41, No. 7, pp. 853-868.
29. Hsua, M. H., Jub, T. L., Yenc, C. H. and Chang, C. M. (2007), “Knowledge sharing behavior in virtual communities: The relationship between trust, self-efficacy, and outcome expectations,” Intternational Journal of Human-Computer Studies, Vol. 65, No. 2, pp. 153-169.
30. Hulland, J. (1999), “Use of partial least squares in strategic management research: A review of four recent studies,” Strategic Management Journal, Vol. 20, No. 2, pp. 195-204.
31. Jöreskog, K. G. and Sörbom, D. S. (1993), LISREL 8, A Guide to the Program and Application, SPSS Inc., Chicago, IL.
32. Jung, Y., Begona, P. M. and Sonja, W. P. (2009), “Consumer adoption of mobile TV: Examining psychological flow and media content,” Computers in Human Behavior, Vol. 25, No. 1, pp. 123-129.
33. Karaali, D., Gumussoy, C. A. and Calisir, F. (2011), “Factors affecting the intention to use a Web-based learning system among blue-collar workers in the automotive industry,” Computers in Human Behavior, Vol. 27, No. 1, pp. 343-354.
34. Karahanna, E. and Limayem, M. (2000), “E-mail and V-mail usage: Generalizing across technologies,” Journal of Organizational Computing and Electronic Commerce, Vol. 10, No. 1, pp. 49-66.
35. Kim, T. G., Lee, J. H. and Law, R. (2008), “An empirical examination of the acceptance behaviour of hotel front office systems: An extended Technology Acceptance Model,” Tourism Management, Vol. 29, No. 4, pp. 500-513.
36. Kwak, Y. H., Park, J., Chung, B. Y. and Ghosh, S. (2011), “Understanding end-users’ acceptance of Enterprise Resource Planning (ERP) system in project-based sectors,” IEEE Transaction on Engineering Management, Vol. pp, No. 99, pp. 1-12.
37. Lee, M. C. (2009), “Predicting and explaining the adoption of online trading: An empirical study in Taiwan,” Decision Support Systemsh, Vol. 47, No. 2, pp. 133-142.
38. Lee, M. C. (2010), “Explaining and predicting users’continuance intention toward e-learning: An extension of the expectation–confirmation model,” Computers & Education, Vol. 54, No. 2, pp. 506-516.
39. Lee, S. and Kim, B. G. (2009), “Factors affecting the usage of intranet: A confirmatory study,” Computers in Human Behavior, Vol. 25, No. 1, pp. 191-201.
40. Lee, S. M., Choi, J. and Lee, S. G. (2004), “The impact of a third-party assurance seal in customer purchasing intention,” Journal of Internet Commerce, Vol. 3, No. 2, pp. 33-51.
41. Lee, Y. C., Li, M. L., Yen, T. M. and Huang, T. H. (2010), “Analysis of adopting an integrated decision making trial and evaluation laboratory on a Technology Acceptance Model,” Expert Systems with Applications, Vol. 37, No. 2, pp. 1745-1754.
42. Lin, W. B., Wang, M. K. and Hwang, K. P. (2010), “The combined model of influencing on-line consumer behavior,” Expert Systems with Applicationsw, Vol. 37, No. 4, pp. 3236-3247.
43. Liu, X. (2010), “Empirical testing of a theoretical extension of the Technology Acceptance Model: An exploratory study of educational Wikis,” Communication Education, Vol. 59, No. 1, pp. 52-69.
44. Lu, Y., Cao, Y., Wang, B. and Yang, S. (2011), “A study on factors that affect users’ behavioral intention to transfer usage from the offline to the online channel,” Computers in Human Behavior, Vol. 27, No. 1, pp. 355-364.
45. Lu, Y., Zhou, T. and Wang, B. (2009), “Exploring Chinese users’acceptance of instant messaging using the Theory of Planned Behavior, the Technology Acceptance Model and the flow theory,” Computers in Human Behavior, Vol. 25, No. 1, pp. 29-39.
46. Luo, X., Li, H., Zhang, J. and Shim, J. P. (2010), “Examining multi-dimensional trust and multi-faceted risk in initial acceptance of emerging technologies: An empirical study of mobile banking services,” Decision Support Systems, Vol. 49, No. 2, pp. 222-234.
47. Manzano, J. A., Navarre, C. L., Mafe´, C. R. and Blas, S. S. (2009), “The role of consumer innovativeness and perceived risk in online banking usage,” International Journal of Bank Marketing, Vol. 27, No. 1, pp. 53-75.
48. McCallum, J., Simons, L., Simons, J. and Friedlander, Y. (1994), “Low serum cholesterol is not associated with depression in the elderly: Data from an Australian community study,” Australian and New Zealand Journal of Medicine, Vol. 24, No. 5, pp. 561-564.
49. Moon, J. W. and Kim, Y. G. (2001), “Extending the TAM for a World-Wide-Web context,” Information & Management, Vol. 38, No. 4, pp. 217-230.
50. Mossholder, K. W., Bennett, N., Kemery, E. R. and Wesolowski, M. A. (1998), “Relationships between bases of power and work reactions: The mediational role of procedural justice,” Journal of Management, Vol. 24, No. 4, pp. 533-552.
51. Nunnally, J. C. (1978) Psychometric Theory (2nd Ed.), McGraw-Hill, New York, NY.
52. Okazaki, S., Li, H. and Hirose, M. (2009), “Consumer privacy concerns and preference for degree of regulatory control: A study of mobile advertising in Japan,” Journal of Advertising, Vol. 38, No. 4, pp. 63-77.
53. Olivero, N. and Lunt, P. (2004), “Privacy versus willingness to disclose in e-commerce exchanges: The effect of risk awareness on the relative role of trust and control,” Journal of Economic Psychology, Vol. 25, No. 2, pp. 243-262.
54. Ortega Egea, J. M. and Román González, M. V. (2011), “Explaining physicians’ acceptance of EHCR systems: An extension of TAM with trust and risk factors,” Computers in Human Behavior, Vol. 27, No. 1, pp. 319-332.
55. Park, S. Y. (2009), “An analysis of the Technology Acceptance Model in understanding university students' behavioral intention to use e-learning,” Educational Technology & Society, Vol. 12, No. 3, pp. 150-162.
56. Pavlou, P. A. (2003), “Consumer acceptance of electronic commerce: Integrating trust and risk with the Technology Acceptance Model,” International Journal of Electronic Commerce, Vol. 7, No. 3, pp. 101-134.
57. Pavlou, P. A. and Gefen, D. (2004), “Building effective online marketplaces with institution-based trust, ” Information Systems Research, Vol. 15, No. 1, pp. 37-59.
58. Pavlou, P. A. and Gefen, D. (2005), “Psychological contract violation in online marketplaces: Antecedents, consequences, and moderating role,” Information Systems Research, Vol. 16, No. 4, pp. 372-399.
59. Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y. and Podsakoff, N. P. (2003), “Common method viases in behavioral research: A critical review of the literature and recommened remedies,” Journal of Applied Psychology, Vol. 88, No. 5, pp. 879-903.
60. Podsakoff, P. M. and Organ, D. W. (1986), “Self reports in organizational research: Problems and prospects,” Journal of Management, Vol. 12, No. 4, pp. 531-544.
61. Rotchanakitumnuai, S. and Speece, M. (2008), “Modeling electronic service acceptance of an e-securities trading system,” Industrial Management & Data Systems, Vol. 109, No. 8, pp. 1069-1084.
62. Sanchez-Franco, M. J. (2010), “WebCT–The quasimoderating effect of perceived affective quality on an extending Technology Acceptance Model,” Computers & Education, Vol. 54, No. 1, pp. 37-46.
63. Sang, S., Lee, J. D. and Lee, J. (2009), “E-government adoption in ASEAN: The case of Cambodia,” Internet Research, Vol. 19, No. 5, pp. 517-534.
64. Schaupp, L. C., Carter, L. and McBride, M. E. (2010), “E-file adoption: A study of U.S. taxpayers’ intentions,” Computers in Human Behavior, Vol. 26, No. 4, pp. 636-644.
65. Schepers, J. and Wetzels, M. (2007), “A meta-analysis of the Technology Acceptance Model: Investigating subjective norm and moderation effects,” Information & Management, Vol. 44, No. 1, pp. 90-103.
66. Scott, J. E. and Walczak, S. (2009), “Cognitive engagement with a multimedia ERP training tool: Assessing computer self-efficacy and technology acceptance,” Information & Management, Vol. 46, No. 4, pp. 221-232.
67. Shannon, R. and Mandhachitara, R. (2008), “Causal path modeling of grocery shopping in hypermarkets,” Journal of Product & Brand Management, Vol. 17, No. 5, pp. 327-340.
68. Shin, D. H. (2008), “Understanding purchasing behaviors in a virtual economy: Consumer behavior involving virtual currency in Web 2.0 communities,” Interacting with Computers, Vol. 20, No. 4-5, pp. 433-446.
69. Shin, D. H. (2009), “Towards an understanding of the consumer acceptance of mobile wallet,” Computers in Human Behavior, Vol. 25, No. 6, pp. 1343-1354.
70. Teo, T. (2008), “A path analysis of pre-service teachers' attitudes to computer use: Applying and extending the Technology Acceptance Model in an educational context,” Interactive Learning Environments, iFirst article, pp. 1-15.
71. Tzou, R. C. and Lu, H. P. (2009), “Exploring the emotional, aesthetic, and ergonomic facets of innovative product on fashion Technology Acceptance Model,” Behaviour & Information Technology, Vol. 28, No. 4, pp. 311-322.
72. Venkatesh, V. and Davis, F. D. (2000), “A theoretical extension of the Technology Acceptance Model: Four longitudinal field studies,” Management Science, Vol. 46, No. 2, pp. 186-204.
73. Venkatesh, V. and Morris, M. G. (2000), “Why don't men ever stop to ask for directions? Gender, social influence, and their role in technology acceptance and usage behavior,” MIS Quarterly, Vol. 24, No. 1, pp. 115-139.
74. Wu, C. S., Cheng, F. F., Yen, D. C. and Huang, Y. W. (2011), “User acceptance of wireless technology in organizations: A comparison of alternative models” Computer Standards & Interfaces, Vol. 33, No. 1, pp. 50-58.
75. Yang, K. (2010), “Determinants of US consumer mobile shopping services adoption: Implications for designing mobile shopping services,” Journal of Consumer Marketing, Vol. 27, No. 3, pp. 262-270.
76. Yousafzai, S. Y., Pallister, J. G. and Foxall, G. R. (2003), “A proposed model of e-trust for electronic banking,” Technovation, Vol. 23, No. 11, pp. 847-860.
77. Zhao, A. L., Lewis, N. K., Lloyd, S. H. and Ward, P. (2010), “Adoption of Internet banking services in China: Is it all about trust?” International Journal of Bank Marketing, Vol. 28, No. 1, pp. 7-26.
78. Zimmer, J. C., Arsal, R. E., Al-Marzouq, M. and Grover, V. (2010), “Investigating online information disclosure: Effects of information relevance, trust and risk,” Information & Management, Vol. 47, No. 2, pp. 115-123.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊