跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/06/10 13:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:范鈞堯
研究生(外文):Chun-Yao Fan
論文名稱:添加微量Sc對鎂鋰合金的機械性質影響
論文名稱(外文):Effect of trace element of Sc on mechanical properities of Magnesium-Lithium alloys
指導教授:王建義
指導教授(外文):Jian-Yih Wang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:65
中文關鍵詞:鎂鋰合金時效處理冷軋延
外文關鍵詞:Mg-Li magnesium alloyaging treatmentcold rolling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:0
本研究中所使用的材料為鎂-鋰-鋁-鋅作為基本成份並添加微量鈧金屬之合金,對LAZ1141+0.1wt%Sc與LAZ1191+0.2wt%Sc鎂合金進行冷加工以及自然時效處理等製程,並在實驗中使用了軋延機、OM、Vickers硬度機、拉伸試驗機等儀器完成所需的製程及觀察各製程所產生之微結構與機械性質上的變化。
實驗結果顯示,兩種材料皆能藉由冷加工處理來達到強化,且在冷加工量20%之製程中,其降伏、抗拉強度所提升的效果最為明顯。如果對LAZ1141+0.1wt%Sc施予更大的加工量,其強度不會有所提升但其延伸率將會逐漸增加;另外,由於發現LAZ1191+0.2wt%Sc中析出的α相較LAZ1141+0.1wt%Sc來得粗大許多,所以其在降伏、抗拉強度上的表現也較為出色。經由冷加工能夠使LAZ1141+0.1wt%Sc及LAZ1191+0.2wt%Sc硬度達到提升,且經過冷加工後,使得藉由自然時效處理的尖峰時效(peak aging)由原先的第2個小時延遲到第4個小時才出現,因此推測冷加工對此材料具有抑制析出的效果。

The alloy design and aging treatment are used to strengthen the Mg-Li alloys. Based on the Mg-Li-Al-Zn alloy composition, by changing the different amount of Al and Sc addition. On LAZ1141+0.1 wt% Sc and LAZ1191+0.2 wt% Sc alloys were cold work and the natural aging process, and used in the experiment rolling machine, OM, Vickers hardness, tensile testing machine and other equipment to complete the necessary and observation of process produced by the process of microstructure and mechanical properties of the changes.
Experimental results show that, both materials can be strengthen by cold rolling, and in 20% of cold rolling, the yield and tensile strength are the most obvious effect of elevated. If lend a greater processing capacity with LAZ1141+0.1 wt% Sc, its strength has not improved but the elongation will be gradually increased. In addition, we find the α-phase in LAZ1191+0.2wt%Sc more bigger than LAZ1141+0.1wt%Sc, so the yield and tensile strength performance are also more outstanding. Through the cold-rolling can make LAZ1141+0.1 wt% Sc and LAZ1191+0.2 wt% Sc hardness increase, and after cold-working, by the natural aging of the peak aging from the second hour to the fourth hour to appear, in that case, speculated that cold-working of this material has the effect of inhibiting precipitation.
第一章 前言 1
1-1 前言 1
1-2 研究動機 2
第二章 文獻回顧 3
2-1 簡介 3
2-1-1 高比強度/比剛性 3
2-1-2 熱傳導散熱性 3
2-1-3 電磁波遮蔽性 4
2-1-4 再回收性 4
2-1-5 制振能高 5
2-1-6 重量最輕的結構材 5
2-2 鎂合金之成分與命名 5
2-3 合金元素的添加對鎂合金之影響 6
2-3-1 常見之合金元素 6
2-3-1-1 鋁(Al) 7
2-3-1-2 鋅(Zn) 7
2-3-1-3 錳(Mn) 7
2-3-1-4 鋰(Li) 8
2-3-1-5 鋯(Zr) 8
2-3-1-6 矽(Si) 8
2-3-1-7 鈣(Ca) 9
2-3-1-8 稀土元素(RE) 9
2-3-2 其他微量的添加元素 9
2-3-2-1 鈹(Be) 9
2-3-2-2 鈧(Sc) 10
第三章 研究方法及其步驟 15
3-1 實驗材料 15
3-1-1 LAZ1141+0.1Sc合金 15
3-1-2 LAZ1191+0.2Sc合金 15
3-2 實驗流程 15
3-3顯微組織觀察 16
3-4 室溫冷軋延(Room Temperature Cold Rolling, CR) 16
3-5 熱處理 17
3-5-1 均質化處理 17
3-5-2 時效處理 17
3-6 XRD分析 17
3-7 硬度測試(Microvickers Hardness Test) 18
3-8 拉伸實驗 18
第四章 結果與討論 23
LAZ1141+0.1Sc及LAZ1191+0.2Sc鎂合金 23
4-1 合金顯微組織觀察 23
4-1-1 LAZ1141+0.1wt%Sc合金顯微組織 23
4-1-2 LAZ1191+0.2wt%Sc合金顯微組織 24
4-2 合金之X光繞射分析 25
4-2-1 LAZ1141及LAZ1191原鑄造材之XRD繞射分析 25
4-2-2 LAZ1141及LAZ1191固溶處理(淬水)之XRD繞射分析 25
4-2-3 LAZ1141及LAZ1191固溶處理(空冷)之XRD繞射分析 26
4-3 合金之機械性質 27
4-3-1 LAZ1141及LAZ1191原鑄造材之機械性質 27
4-3-2 LAZ1141及LAZ1191 固溶後(淬水)之機械性質 27
4-3-3 LAZ1141及LAZ1191 固溶後(空冷)之機械性質 28
第五章 結論 61
參考文獻 63

1.J.Y. Wang, W.P. Hong, P.C. Hsu, C.C. Hsu, S. Lee, Mater. Sci. Forum 419-422(2003) 65-170.
2.Y. Kojima, S. Kamado, Mater. Sci. Forum 488/489 (2005) 9-16.
3.Rosch, R., et al., Simulation aided design and process development for magnesium die castings. Die Casting Engineer, 1998. 42(4): p. 54-+.
4.F.W. Bach, M. Niemeyer, H. Haferkamp, SFB 390(2001)27-28.
5.O. Sivakesavam, Y.V.R.K. Prasad, Mater. Sci. Eng. A 323 (2002) 270-277.
6.R.J. Jackson and P.D. Frost, Properties and current Applications of Magnesium-Lithium Alloys, Washington, D.C., NASA SP-5068, 1967.
7.Phase Diagrams of Binary Magnesium Alloys. (Eds.Nayeb-Hashemi AA,Clark JB),ASM International, Materials Park, OH, 1988, p.1
8.Raynor GV, Hume-Rothery W (1939), J. Inst.Met. 65, 379
9.Busk RS (1952) Trans. AIME 194, 207
10.ASM Speciality Handbook, “Magnesium and Magnesium Alloys”, ASM International, (1999), pp. 3-43.
11.Hume-Rothery W, Raynor GE (1956) Structure of Metals and Alloys, Institute of Metals,London
12.Raynor GW (1959) Physical Metallurgy of Magnesium and its Alloys. Pergamon Press, New York, p. 103
13.賴耿陽,”非鐵金屬材料”,復漢出版社,1998年,第173~191頁。
14.R.W. Cahn, P.Hassen and E.J. Kramer, Mater. Sci. Technol,.8 (1996) 131.
15.H. Okamoto, J. Phase Equilibria, 19(1998) 598.
16.H.E. Friedrich and B.L. Mordike, “Magnesium Technology”, Springer-Verlag Berlin Heidelberg, 2006.
17.C. Shaw and H. Jones, Mater. Sci. Eng. A 226-228 (1997) 856.
18.M. M. Avedesian and H. Baker, “ASM Specialty Handbook- Magnesium and Magnesium Alloys”, ASM Metals Park, OH, 1999, pp.13-43.
19.Michael M. Avedesian and Noranda Magnesium Inc., ASM SpecialtyHandbook, “Magnesium and Magnesium Alloys”, publish by The Materials Information Socie., pp.14-15.
20.A.A. Naybe-Hashemi and J.B. Clark, Ed., “Phase Diagrams of binary Magnesium Alloys”, ASM International, Materials Park, OH, 1998.
21.A.K. Dahle, T.C. Lee, M.D. Nave, P.L. Schaffer, D.H. StJohn, “Development of the as-cast microstructure in magnesium aluminum alloys”, Journal of Light Metals, pp. 61-72, 2001
22.W. Blum, P. Zhang, B. Watzinger, B.V. Grossmann and H.G. Haldenwanger, Mater. Sci. Eng. A 319-321 (2001) 735-740.
23.劉文勝,”AZ61鎂合金的疲勞性質與破壞分析”,中央大學機械工程研究所,碩士論文,2000年。
24.N.V. Ravi Kumar, J.J. Blandin, M. Suery, E. Grosjean, Scr. Mater. 49 (2003) 225-230.
25.賴威任,”AZ80鎂合金析出硬化與超塑性研究”,國立台灣大學材料科學與工程研究所碩士論文,2008。
26.魏振仁,”鎂合金時效行為之研究”,義守大學材料所碩士論文,2001。
27.S.C. Wang, C.P. Chou, and Y.C. Fann, Mater. Sci. Eng. A 485 (2008) 428-438.
28.S.C. Wang, C.P. Chou, Mater. Sci. Eng. A 197 (2008) 116-121.
29.Haibin Ji, Guangchun Yao, Hongbin Li, “Microstructure, cold rolling, heat treatment, and mechanical properties of Mg-Li alloys”, Journal of University of Science and Technology Beijing, Vol.15, (2008) 440.855

30.G.S. Song, M. Staiger and M. Kral, “Some new characteristics of the strengthening phase in β-phase magnesium–lithium alloys containing aluminum and beryllium”, Materials Science and Engineering: A, Vol.371 (1-2), pp. 371-376, Apr.2004.
31.Chiang, C.T., S. Lee, and C.L. Chu, Rolling route for refining grains of super light Mg-Li alloys containing Sc and Be. Transactions of Nonferrous Metals Society of China, 2010. 20(8): p. 1374-1379.
32.C. C. Hsu, J. Y. Wang and S. Lee, “Room Temperature Aging Characteristic of MgLiAlZn Alloy”, Material Transactions, Vol. 49(11), pp. 2728-2731, 2008.
33.Yang, C.W., et al., Tensile mechanical properties and failure behaviors with the ductile-to-brittle transition of the alpha plus beta-type Mg-Li-Al-Zn alloy. Scripta Materialia, 2009. 61(12): p. 1141-1144.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊