跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/14 18:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周柏寰
研究生(外文):Po-Huan Chou
論文名稱:智慧型同動控制之龍門式定位平台
指導教授:林法正林法正引用關係謝欣然謝欣然引用關係
指導教授(外文):Faa-Jeng LinHsin-Jang Shieh
學位類別:博士
校院名稱:國立東華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:197
中文關鍵詞:龍門式定位平台雙線性馬達同動控制函數連結放射狀基底函數網路互補式滑動模態控制第二型區間遞迴式模糊類神經網路無奇點終端滑動模態控制
外文關鍵詞:Gantry position stageSynchronous controlFunctional link radial basis function networkComplementary sliding mode controlInterval type-2 recurrent fuzzy neural networkNon-singular terminal sliding mode control
相關次數:
  • 被引用被引用:9
  • 點閱點閱:1226
  • 評分評分:
  • 下載下載:331
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究的目的是研製與發展以數位訊號處理器為基礎之智慧型同動控制系統,以達到龍門式定位平台各軸的精密定位控制與雙線性馬達間有效的同動控制與強健性之目的。本論文採用的龍門式定位平台是由三台永磁線型同步馬達所組成的。龍門式定位平台的機構特點,為利用雙平行線性馬達來驅動單一運動軸以增加驅動推力,即具有機構耦合之雙線性馬達,因此雙線性馬達間的同動控制便成為龍門式定位平台控制的重大課題。由於雙軸間的機構耦合效應所產生的同動誤差會造成控制性能的下降,因此本論文首先分別針對雙線性馬達推導了交叉耦合模型與龍門式定位平台推導了以Lagrangian方程式為基礎之三自由度龍門動態模型。接著為了使龍門式精密定位平台能在參數變化、摩擦力、外來干擾與多軸系統中交叉耦合干擾的影響下具備強健之控制性能,本論文提出了以下四種智慧型同動控制系統:交叉耦合式函數連結放射狀基底函數網路控制系統、交叉耦合式智慧型互補式滑動模態控制系統、以三自由度龍門動態模型為基礎之第二型區間遞迴式模糊類神經網路控制系統和以三自由度龍門動態模型為基礎之智慧型無奇點終端滑動模態控制系統,利用智慧型控制的線上學習能力與快速收斂特性來達到各軸的精密定位控制與雙線性馬達間有效的同動控制與強健性之特點。而所提出的四種智慧型同動控制系統皆實現於以32位元浮點數運算的數位訊號處理器TMS320VC33。最後由實作結果加以驗證所設計的控制器之有效性與可行性。
The objective of this dissertation is to develop and implement digital signal processor (DSP) based intelligent synchronous control systems for a gantry position stage, which is composed of three permanent magnet linear synchronous motors (PMLSMs), to achieve precision position control for each motor and effective synchronous control for dual linear motors with robustness. In the configuration of the gantry position stage, two parallel linear motors are physically coupled with a mechanism to realize one-degree movement to enhance the driving force. Hence, the synchronous control of the dual linear motors has become a challenge in the gantry position stages. In this dissertation, to consider the effect of inter-axis mechanical coupling which degenerates control performance and results in synchronous error, a cross-coupled model for dual linear motors and a Lagrangian equation based three-degree-of-freedom (3-DOF) dynamic model for gantry position stage are derived respectively. Moreover, the control accuracy is much influenced by the existence of uncertainties, which usually comprises parameter variations, external disturbances, cross-coupled interference and friction force. Therefore, four intelligent synchronous control systems with on-line learning capability, fast convergence and robust control characteristics to achieve precision position control for each motor and effective synchronous control for dual linear motors are proposed: A cross-coupled functional link radial basis function network (FLRBFN) control system, a cross-coupled intelligent complementary sliding mode control (ICSMC) system, a 3-DOF dynamic model based interval type-2 recurrent fuzzy neural network (IT2RFNN) control system and a 3-DOF dynamic model based intelligent non-singular terminal sliding mode control (INTSMC) system. Furthermore, the proposed intelligent synchronous control approaches are implemented in a control computer which is based on a 32-bit floating-point DSP, TMS320VC33. Finally, some experimental results are illustrated to show the validity of the proposed intelligent synchronous control approaches.
中文摘要 I
英文摘要 II
目錄 IV
圖目錄 VII
表目錄 XVIII
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 3
1.3 雙線性馬達之同動控制發展概況 10
1.4 論文大綱 12
第二章 以浮點運算數位訊號處理器為基礎之龍門式定位平台控制系統 14
2.1 永磁線型同步馬達之基本介紹 14
2.2 單軸永磁線型同步馬達之工作原理 17
2.2.1 電壓方程式 17
2.2.2 作用力方程式 20
2.3 單軸永磁線型同步馬達之驅動系統 23
2.4 STC-VC33單板控制電腦及介面 23
2.4.1 STC-VC33單板控制電腦之簡介 24
2.4.2 STC-VC33單板控制電腦之功能 26
2.4.3 STC-6EN擴充模組 27
2.5 以浮點運算數位訊號處理器為基礎之龍門式定位平台控制系統 28
2.6 龍門式定位平台控制系統機械參數之鑑別 29
2.7 龍門式定位平台控制系統之軟體發展流程介紹 34
第三章 交叉耦合式函數連結放射狀基底函數網路控制系統 35
3.1 簡介 35
3.2 交叉耦合同動控制策略 35
3.3 交叉耦合式函數連結放射狀基底函數網路控制系統 37
3.3.1 函數連結類神經網路之描述 39
3.3.2 函數連結放射狀基底函數網路之描述 39
3.3.3 線上學習法則 42
3.3.4 收斂性分析 44
3.4 實作結果 47
第四章 交叉耦合式智慧型互補式滑動模態控制系統 71
4.1 簡介 71
4.2 交叉耦合同動控制策略 71
4.3 交叉耦合式互補式滑動模態控制器 72
4.4 TSK型模糊類神經網路估測器 75
4.5 交叉耦合式智慧型互補式滑動模態控制系統 77
4.6 實作結果 83
4.7 應用於雙線性馬達的交叉耦合式智慧型同動控制器之結論與分析 99
第五章 以三自由度龍門動態模型為基礎之第二型區間遞迴式模糊類神經網路控制系統 103
5.1 簡介 103
5.2 三自由度龍門動態模型 104
5.2.1 龍門式定位平台簡介 104
5.2.2 以Lagrangian方程式為基礎之三自由度龍門動態模型 105
5.3 第二型區間遞迴式模糊類神經網路 108
5.4 以三自由度龍門動態模型為基礎之第二型區間遞迴式模糊類神經網路控制系統 115
5.5 實作結果 121
第六章 以三自由度龍門動態模型為基礎之智慧型無奇點終端滑動模態控制系統 145
6.1 簡介 145
6.2 三自由度龍門動態模型 146
6.3 以三自由度龍門動態模型為基礎之無奇點終端滑動模態控制系統 146
6.4 第二型區間遞迴式非對稱模糊類神經網路估測器 150
6.5 以三自由度龍門動態模型為基礎之智慧型無奇點終端滑動模態控制系統 156
6.6 實作結果 162
6.7 應用於龍門式定位平台的以三自由度龍門動態模型為基礎之智慧型同動控制器之結論與分析 178
第七章 結論與未來研究方向 182
7.1 結論 182
7.3 未來研究方向 183
參考文獻 185
作者簡歷 194
[1] Y. Koren, “Cross-coupled biaxial computer control for manufacture systems,” ASME Journal of Dynamic System, Measurement, and Control, vol. 102, pp. 265-272, 1980.
[2] S. Kim, B. Chu, D. Hong, H. K. Park, J. M. Park, and T. Y. Cho, “Synchronizing dual-drive gantry of chip mounter with LQR approach,” in Proceedings IEEE/ASME International Conference on Advanced Intelligent Mechatronics, vol. 2, pp. 838-843, 2003.
[3] B. Chu, S. Kim, D. Hong, H. K. Park, J. Park, “Optimal cross-coupled synchronizing control of dual-drive gantry system for a SMD assembly machine,” JSME International Journal, Series C; Mechanical Systems, Machine Elements and Manufacturing, vol. 47, no. 3, pp.939-945, 2004.
[4] FANUC, Parameter Manual of a-series AC Servo Motor. FANUC, 1994.
[5] SIEMENS, 840D/FM-NC Description of functions, special Functions (Part 3). SIEMENS, 1999.
[6] T. S. Giam, K. K. Tan, S. Huang, “Precision coordinated control of multi-axis gantry stages,” ISA Transactions, vol. 46, no. 3, pp. 399-409, 2007.
[7] C. S. Teo, K. K. Tan, S. Y. Lim, S. Huang, E. B. Tay, “Dynamic modeling and adaptive control of a H-type gantry stage,” Mechatronics, vol. 17, no. 7, pp. 361-367, 2007.
[8] C. S. Teo, K. K. Tan, S. Y. Lim, “Dynamic geometric compensation for gantry stage using iterative learning control,” IEEE Transections on Instrumentation and Measurement, vol. 57, no. 2, pp. 413-419, 2008.
[9] J. J. E. Slotine and W. Li, Applied Nonlinear Control. Prentice-Hall, 1991.
[10] C. K. Lai and K. K. Shyu, “A novel motor drive design for incremental motion system via sliding-mode control method,” IEEE Transections on Industrial Electronics, vol. 52, no. 2, pp. 449-507, 2005.
[11] S. C. Tan, Y. M. Lai, C. K. Tse, “Indirect sliding mode control of power converters via double integral sliding surface,” IEEE Transections on Industrial Electronics, vol. 23, no. 2, pp. 600-611, 2008.
[12] B. Beltran, T. Ahmed-Ali, and M. Benbouzid, “High-order sliding-mode control of variable-speed wind turbines,” IEEE Transections on Industrial Electronics, vol. 56, no. 9, pp. 3314-3321, 2009.
[13] B. Veselic, B. Perunicic-Drazenovic, and C. Milosavljevic, “Improved discrete-time sliding-mode position control using Euler velocity estimation,” IEEE Transections on Industrial Electronics, vol. 57, no. 11, pp. 3840-3847, 2010.
[14] H. M. Chen, J. P. Su, and J. C. Renn, “A novel sliding mode control of an electrohydraulic position servo system,” IEICE Transections on Fundamentals, vol. E85-A, no. 8, pp. 1928-1936, 2002.
[15] J. P. Su and C. C. Wang, “Complementary sliding control of non-linear system,” International Journal of Control, vol. 75, no. 5, pp. 360-368, 2002.
[16] H. M. Chen, J. C. Renn, and J. P. Su, “Sliding mode control with varying boundary layers for an electro-hydraulic position servo system,” International Journal of Advanced Manufacturing Technology, vol. 26, pp. 117-123, 2005.
[17] M. Zhihong and X. H. Yu, “Terminal sliding mode control of MIMO linear systems,” IEEE Transections on Circuits and Systems Part I: Fundamental Theory and Applications, vol. 44, no. 11, pp. 1065-1070, 1997.
[18] S. Yua, X. Yub, B. Shirinzadehc, and Z. Mand, “Continuous finite-time control for robotic manipulators with terminal sliding mode,” Automatica, vol. 41, no.11, pp. 1957-1964, 2005.
[19] Y. Feng, X. Yu, and Z. Man, “Non-singular terminal sliding mode control of rigid manipulators,” Automatica, vol. 38, no.12, pp. 2159-2167, 2002.
[20] C. K. Lin, “Nonsingular terminal sliding mode control of robot manipulators using fuzzy wavelet networks,” IEEE Transections on Fuzzy Systems, vol. 14, no. 6, pp. 849-859, 2006.
[21] C. W. Tao, J. S. Taur, and M. L. Chan, “Adaptive fuzzy terminal sliding mode controller for linear systems with mismatched time-varying uncertainties,” IEEE Transections on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 34, no. 1, pp. 255-262, 2004.
[22] J. S. R. Jang, C. T. Sun, and E. Mizutani, Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. Prentice-Hall, 1997.
[23] J. S. R. Jang and C. T Sun, “Functional equivalence between radial basis function networks and fuzzy inference systems,” IEEE Transections on Neural Networks, vol. 4, no. 1, pp. 156-159, 1993.
[24] H. D. Patino and D. Liu, “Neural network-based model reference adaptive control system,” IEEE Transections on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 30, no. 1, pp. 198-204, 2000.
[25] C. S. Liu, S. J. Zhang, and S. S. Hu, “Adaptive neural-networks-based fault detection and diagnosis using unmeasured states,” IET Control Theory and Applications, vol. 2, no. 12, pp. 1066-1076, 2008.
[26] F. J. Lin, L. T. Teng, C. Y. Chen, and C. K. Chang, “Robust RBFN control for linear induction motor drive using FPGA,” IEEE Transections on Power Electronics, vol. 23, no. 4, pp. 2170-2180, 2008.
[27] F. J. Lin, H. J. Shieh, P. K. Huang, and L. T. Teng, “Adaptive control with hysteresis estimation and compensation using RFNN for piezo-actuator,” IEEE Transections on Ultrasonics, Ferroelectrics and Frequency Control, vol. 53, no. 9, pp. 1649-1661, 2006.
[28] J. C. Patra and R. N. Pal, “A functional link artificial neural network for adaptive channel equalization,” Signal Processing, vol. 43, pp. 181-195, 1995.
[29] J. C. Patra and A. C. Kot, “Nonlinear dynamic system identification using Chebyshev functional link artificial neural networks,” IEEE Transections on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 32, no. 4, pp. 505-511, 2002.
[30] K. A. Toh and W. Y. Yau, “Fingerprint and speaker verification decisions fusion using a functional link network,” IEEE Transections on System, Man, and Cybernetics, Part C: Applications and Reviews, vol. 35, no. 3, pp. 357-370, 2005.
[31] C. H. Chen, C. T. Lin, and C. J. Lin, “A functional-link-based fuzzy neural network for temperature control,” in Proceedings IEEE Foundations of Computational Intelligence Conference, pp. 53-58, 2007.
[32] L. X. Wang, A course in fuzzy systems and control. Prentice-Hall Press, 1997.
[33] S. Cong and Y. Liang, “PID-like neural network nonlinear adaptive control for uncertain multivariable motion control systems,” IEEE Transections on Industrial Electronics, vol. 56, no. 10, pp. 3872-38795, 2009.
[34] T. Orlowska-Kowalska, M. Dybkowski, and K.Szabat, “Adaptive sliding-mode neuro-fuzzy control of the two-mass induction motor drive without mechanical sensors,” IEEE Transections on Industrial Electronics, vol. 57, no. 2, pp. 553-564, 2010.
[35] M. J. Er and C. Deng, “Obstacle avoidance of a mobile robot using hybrid learning approach,” IEEE Transections on Industrial Electronics, vol. 52, no. 3, pp. 898-905, 2005.
[36] F. J. Lin and P. H. Shen, “Robust fuzzy neural network sliding-mode control for two-axis motion control system,” IEEE Transections on Industrial Electronics, vol. 53, no. 4, pp. 1209-1225, 2006.
[37] F. J. Lin, P. H. Shieh, and P. H. Chou, “Robust adaptive backstepping motion control of linear ultrasonic motors using fuzzy neural network,” IEEE Transections on Fuzzy Systems, vol. 16, no. 3, pp. 672-692, 2008.
[38] A. Gajate, R. E. Haber, P. I. Vega, and J. R. Alique, “A transductive neuro-fuzzy controller: application to a drilling process,” IEEE Transections on Neural Networks, vol. 21, no. 7, pp. 1158-1167, 2010.
[39] C. C. Chuang, S. F. Su, and S. S. Chen, “Robust TSK fuzzy modeling for function approximation with outliers,” IEEE Transections on Fuzzy Systems, vol. 9, no. 6, pp. 810-821, 2001.
[40] Y. Gao and M. Joo, “Online adaptive fuzzy neural identification and control of a class of MIMO nonlinear systems,” IEEE Transections on Fuzzy Systems, vol. 11, pp. 462-477, 2003.
[41] C. J. Lin and C. C. Chin, “Prediction and identification using wavelet-based recurrent fuzzy neural networks,” IEEE Transections on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 34, no. 5, pp. 2144-2154, 2004.
[42] I. B. Kucukdemiral and G. Cansever, “Formalization of a novel Sugeno type adaptive fuzzy sliding mode controller for a class of nonlinear systems,” in Proceedings IEEE International Conference Mechatronics, pp.717-720, 2005.
[43] L. A. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning-I,” Information Sciences, vol. 8, no. 3, pp. 199-249, 1975.
[44] J. M. Mendel and R. I. B. John, “Type-2 fuzzy sets made simple,” IEEE Transections on Fuzzy Systems, vol. 10, no. 2, pp. 117-127, 2002.
[45] J. M. Mendel, R. I. B. John, and F. Liu, “Interval type-2 fuzzy logic systems made simple,” IEEE Transections on Fuzzy Systems, vol. 14, no. 6, pp. 808-821, 2006.
[46] J. M. Mendel, Uncertain rule-based fuzzy logic systems: introduction and new directions. Prentice-Hall, 2001.
[47] N. N. Karmik and J. M. Mendel, “Centroid of a type-2 fuzzy set,” Information Sciences, vol. 132, no. 1-4, pp. 195-220, 2001.
[48] Q. Liang and J. M. Mendel, “Interval type-2 logic systems: theory and design,” IEEE Transections on Fuzzy Systems, vol. 8, pp. 535-550, 2000.
[49] F. J. Lin, P. H. Chou, P. H. Shieh, and S. Y. Chen “Robust control of LUSM based X-Y-Theta motion control stage using adaptive interval type-2 fuzzy neural network,” IEEE Transections on Fuzzy Systems, vol. 17, no. 1, pp. 24-38, 2009.
[50] C. F. Juang, R. B. Huang, and Y. Y. Lin, “A recurrent self-evolving interval type-2 fuzzy neural network for dynamic system processing,” IEEE Transections on Fuzzy Systems, vol. 17, no. 5, pp. 1092-1105, 2009.
[51] C. F. Juang, Y. Y. Lin, and I. F. Chung, “Dynamic system identification using a Type-2 recurrent fuzzy neural network,” in Proceedings 7th Asian Control Conference, pp. 768-772, 2009.
[52] H. Y. Pan, C. H. Lee, F. K. Chang, and S. K. Chang, “Construction of asymmetric type 2 fuzzy membership function and application in time series prediction,” in Proceedings International Conference Machine Learning and Cybernetics, pp. 2024-2030, 2007.
[53] K. H. Cheng, C. F. Hsu, C. M. Lin, T. T. Lee, and C. Li, “Fuzzy neural sliding mode control for dc-dc converters using asymmetric Gaussian membership functions,” IEEE Transections on Industrial Electronics, vol. 54, no. 3, pp. 1528-1536, 2004.
[54] C. H. Lee, T. W. Hu, C. T. Lee, and Y. C. Lee, “A recurrent interval type-2 fuzzy neural network with asymmetric membership functions for nonlinear system identification,” in Proceedings IEEE Conference Fuzzy Systems, pp. 1496-1502, 2008.
[55] F. Y. Chang and C. H. Lee, “Interval type-2 recurrent fuzzy neural system with asymmetric membership functions for chaotic system identification,” in Proceedings SICE Annual Conference, pp. 256-260, 2010.
[56] 楊君賢,具機構耦合之雙線性伺服系統鑑別與控制,碩士論文,國立成功大學機械工程學系,台南,2003。
[57] D. Yu, Q. Guo, Q. Hu, and J. Lili, “Position synchronized control of dual linear motors servo system using fuzzy logic,” in Proceedings Conference on Intelligent Control and Automation, pp. 8041-8044, 2006.
[58] 楊宗翰,龍門式雙軸平台之模糊類神經網路同步控制,碩士論文,國立台北科技大學自動化科技研究所,台北,2011。
[59] A. Rodriguez-Angeles and H. Nijmeijer, “Mutual synchronization of robots via estimated state feedback: a cooperative approach,” IEEE Transections on Control Systems Technology, vol. 12, no. 4, pp. 542-554, 2004.
[60] M. T. Yan, M. H. Lee, and P. L. Yen, “Theory and application of a combined self-tuning adaptive control and cross coupling control in a retrofit milling machine,” Mechatronics, vol. 15, no. 2, pp. 193-211, 2005.
[61] D. Sun, “Position synchronization of multiple motion axes with adaptive coupling control,” Automatica, vol. 39, no. 3, pp. 997-105, 2003.
[62] D. Sun, G. Feng, C. M. Lam, and H. Dong, “Orientation control of a differential mobile robot through wheel synchronization,” IEEE/AMSE Transections on Mechatronics, vol. 10, no. 3, pp. 345-351, 2005.
[63] 周柏寰,利用強健性Sugeno型適應性模糊類神經網路控制之雙軸運動控制系統,碩士論文,國立東華大學電機工程學系,花蓮,2007。
[64] 史賓納科技股份有限公司,STC-VC33使用手冊, 台北,2006。
[65] F. J. Lin, P. H. Shen, P. H. Chou, and S. L. Yang, “TSK-type recurrent fuzzy network for DSP-based permanent magnet linear synchronous motor servo drive,” IEE Proc. Electric Power Application, vol. 153, no. 6, pp. 921-931, 2006.
[66] R. J. Wai and C. M. Li, “Design of dynamic Petri recurrent fuzzy neural network and its application to path-tracking control of nonholonomic mobile robot,” IEEE Transections on Industrial Electronics, vol. 56, no. 7, pp. 2667-2683, 2009.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊