跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/16 10:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:梁育豪
研究生(外文):Yu-Hao Liang
論文名稱:利用熱氧化法製備氧化銅電阻式記憶體之特性研究
論文名稱(外文):Characteristics of CuxO-based Resistive Switching Memory Prepared by Thermal Oxidation
指導教授:林群傑林群傑引用關係
指導教授(外文):Chun-Chieh Lin
學位類別:碩士
校院名稱:國立東華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:63
中文關鍵詞:電阻式記憶體熱氧化法CuxO無極性電阻轉換電阻轉態模型
外文關鍵詞:Resistance random access memory (RRAM)thermal oxidationCuxOnonpolar resistive switchingresistive switching model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:414
  • 評分評分:
  • 下載下載:116
  • 收藏至我的研究室書目清單書目收藏:0
隨著時代的進步,人類對於3C 產品在功能及便利性方面的要求也越來越高,在這些多功能的3C 產品中,記憶體著實扮演著不可或缺的角色,但是目前主流的非揮發性記憶體—快閃記憶體正面臨著製程微縮上的瓶頸,且元件資料寫入的過程中其功率消耗過大、操作速度慢、耐久力不良等問題存在,因此次世代非揮發性記憶體紛紛成為各界的研究目標。其中,電阻式記憶體(Resistance random access memory, RRAM)憑藉著其低功率消耗、高操作速度、元件面積小及可多位元儲存元件等潛力受到各界高度的關注,成為各界的研究重點。
RRAM的記憶單元結構為簡單的金屬/氧化層/金屬結構,此研究是使用熱氧化法製備CuxO薄膜形成Al/CuxO/Pt之RRAM元件,由於熱氧化法與其它製程方式相比其製程技術簡單且產能高,因此能夠相對達到節省成本之優勢。
本論文的第一章為研究背景與動機,介紹記憶體的發展及簡單地作各式記憶體的規格比較。第二章為文獻回顧,除了詳盡介紹目前各式次世代非揮發性記憶體的運作原理外,並將重心置於RRAM上,介紹其操作原理、氧化層材料、電阻轉態機制及導電機制。第三章為實驗設備與流程,詳盡的介紹此研究Al/CuxO/Pt之RRAM元件的製程流程,並對元件的量測項目及方式作介紹。第四章為結果與討論,此研究使用不同的製程溫度及Cu 金屬沉積時間作為變數,並對其電性量測結果的差異作探討,接著提出電阻轉態模型以解釋Al/CuxO/Pt元件的電阻轉換現象,最後將使用電性分析結果特性最佳之試片與其它文獻作比較。
此研究使用不同製程溫度及不同Cu金屬沉積時間作為變數,製程溫度分別為200及450 ℃,沉積時間分別為10 min﹙Cu: 10 min﹚及30 min﹙Cu: 30 min﹚。電性量測結果顯示,製程溫度為200 ℃之試片並沒有完整的電阻轉換現象,而450 ℃之試片顯示無極性電阻轉換之現象,其中,Cu: 10 min之試片與Cu: 30 min相比擁有較佳的耐久力,其轉態次數可達800 次,而此耐久力的差異推測為CuxO膜厚的不同所致。此外,兩者試片的記憶時間皆可以達到105 s,導電機制皆遵循歐姆傳導。透過此研究提出的電阻轉態模型可以推測Al/CuxO/Pt元件是透過O空缺之聚集形成導電路徑﹙Conductive filaments, CFs﹚,及CFs之斷裂來達到高低阻態之間的轉換,推測O空缺之聚集主要是受到電場的影響推移而開始進行隨機聚集形成CFs,而CFs之斷裂則推測是透過焦耳熱產生再氧化之現象所致。與其它文獻比較的結果亦可發現此研究的轉態電壓稍嫌過大,推測是因為氧化層膜厚較厚所致,但是在耐久力的比較方面,與其它文獻相比,此研究的研究成果擁有較佳的耐久力,其轉態可達800 次。
因此,利用熱氧化法製備Al/CuxO/Pt之RRAM元件具有無極性電阻轉換特性,且有著元件製程技術簡單、擁有良好的耐久力及記憶時間等優點,成為一個指日可待的次世代非揮發性記憶體。
Along with the progress of semiconductor technology, people become to ask more applications and more convenience of 3C products. For this reason, the memories actually play an important role of the situation. Unfortunately, the mainstream non-volatile memory, flash memory, taking the
challenge of the scale limit issue, and the flash memory actually has the disadvantage of high power consumption when programming and erasing. Hence, the next generation non-volatile memories with different producing technique are reported. Resistance random access memory (RRAM) has
the potential of low power consumption, high programming speed, small cell area, and the possibility of multi-level storage, which attract great attention from the researcher.
The memory cell of RRAM device is a simple Metal/Insulator/Metal (MIM) structure. In this work, the CuxO thin film are prepared by thermal oxidation, and the MIM structure is Al/CuxO/Pt. Comparison with other fabrication methods, thermal oxidation takes the advantages of easy fabrication and high producing efficiency, leading to the advantage of low cost fabrication.
In this thesis, Chapter 1 introduces the development of the memories and their comparison. Chapter 2 shows the introduction of the next generation non-volatile memories. We further take the focus on the introduction of the RRAM device, such as operation principle, insulator materials,
resistive switching mechanisms, and conduction mechanisms. Chapter 3 presents the details of the experiment, including the fabrication details and the measurement details. Chapter 4 is the results and discussion of this work. In the thesis, we discuss the difference of the electrical measurement results from the devices with different fabrication temperatures and different Cu deposition time.
Next, the thesis further reports a resistive switching model, trying to demonstrate the resistive switching phenomenon of Al/CuxO/Pt devices. Finally, the thesis takes the device with the best resistive switching characteristics, and takes the comparison with other works.
In the work, we discuss the difference of the electrical measurement results from the device with different fabrication temperatures and different Cu deposition time. The fabrication temperature are 200 and 450 ℃. The Cu deposition time are 10 min (Cu: 10 min) and 30 min (Cu:
30 min). From the electrical measurement results, the devices under 200 ℃ fabrication temperature don’t show any complete resistive switching, but the devices under 450 ℃ fabrication temperature show nonpolar resistive switching. In comparison with the Cu: 10 min and the Cu: 30
min devices, the Cu: 10 min device shows the best endurance of 800 cycles. Besides, the retention test of two devices (Cu: 10 min and Cu: 30 min) both can be over 105 s. The conduction mechanisms of two memory states are both Ohmic conduction. From the resistive switching model of the work, we infer that the resistive switching phenomenon of the Al/CuxO/Pt devices is due to the formation/rupture of conductive filaments (CFs) by oxygen vacancies. The CFs’ formation is discussed due to the influence of electric field, which may affect oxygen vacancies to cluster together to form the CFs. The CFs’ rupture is due to the influence of Joule heating, which may affect oxygen vacancies to capture oxygen ions to rupture the CFs. In the comparison with other works, we can find that the set voltages presented in the work are a little higher than the others, which can be thought as the influence of CuxO thickness. However, the work shows good endurance than the others, which is over 800 cycles.
Finally, the CuxO-based RRAM devices prepared by thermal oxidation show nonpolar resistive switching, and the devices take the advantages such as easy fabrication, good endurance, and long retention time, reaching a high potential of being a great next generation non-volatile memory.
致謝 I
摘要 II
Abstract IV
論文目錄 VI
表目錄 VIII
圖目錄 IX
第1章 研究背景與動機 1
1.1 研究背景 1
1.2 研究動機 1
第2章 文獻回顧 5
2.1 次世代記憶體介紹 5
2.1.1 鐵電記憶體 5
2.1.2 磁性記憶體 6
2.1.3 相變化記憶體 6
2.1.4 電阻式記憶體 6
2.2 電阻轉換效應 7
2.2.1 雙極性電阻轉換 7
2.2.2 單極性電阻轉換 8
2.2.3 無極性電阻轉換 8
2.2.4 限流的重要性 8
2.3 電阻式記憶體材料 8
2.3.1 二元金屬氧化物 9
2.3.2 鈣鈦礦結構氧化物 10
2.3.3 金屬摻雜氧化物 11
2.4 電阻轉態機制 12
2.4.1 燈絲理論 12
2.4.2 蕭特基能障調變 13
2.4.3 空間電荷限制電流 13
2.5 導電機制 14
2.5.1 蕭特基發射 14
2.5.2 穿隧效應 14
2.5.3 歐姆傳導 15

致謝 I
摘要 II
Abstract IV
論文目錄 VI
表目錄 VIII
圖目錄 IX
第1章 研究背景與動機 1
1.1 研究背景 1
1.2 研究動機 1
第2章 文獻回顧 5
2.1 次世代記憶體介紹 5
2.1.1 鐵電記憶體 5
2.1.2 磁性記憶體 6
2.1.3 相變化記憶體 6
2.1.4 電阻式記憶體 6
2.2 電阻轉換效應 7
2.2.1 雙極性電阻轉換 7
2.2.2 單極性電阻轉換 8
2.2.3 無極性電阻轉換 8
2.2.4 限流的重要性 8
2.3 電阻式記憶體材料 8
2.3.1 二元金屬氧化物 9
2.3.2 鈣鈦礦結構氧化物 10
2.3.3 金屬摻雜氧化物 11
2.4 電阻轉態機制 12
2.4.1 燈絲理論 12
2.4.2 蕭特基能障調變 13
2.4.3 空間電荷限制電流 13
2.5 導電機制 14
2.5.1 蕭特基發射 14
2.5.2 穿隧效應 14
2.5.3 歐姆傳導 15
2.5.4 空間電荷限制電流 15
2.5.5 普爾-法蘭克發射 16
2.5.6 離子傳導 16
第3章 實驗設備與流程 29
3.1 製程設備 29
3.1.1 熱氧化爐管 29
3.1.2 射頻磁控濺鍍系統 29
3.1.3 快速熱退火系統 29
3.2 實驗流程 30
3.2.1 基板準備 30
3.2.2 Pt底電極之製備 30
3.2.3 Cu金屬薄膜之製備 30
3.2.4 CuxO薄膜之製備 30
3.2.5 Al上電極之製備 31
3.2.6 實驗變數統整 31
3.3 量測方法 31
3.3.1 元件電性分析 31
3.3.2 薄膜材料特性分析 32
第4章 結果與討論 37
4.1 製程溫度450 ℃之試片分析 37
4.1.1 電性分析 37
4.1.2 材料特性分析 40
4.2 製程溫度200 ℃之試片分析 40
4.2.1 電性分析 40
4.2.2 材料特性分析 41
4.3 比較與統整 41
4.3.1 不同製程溫度比較 41
4.3.2 不同Cu金屬厚度比較 42
4.3.3 綜合比較與統整 42
4.4 相反偏壓極性操作方式對於特性之影響 43
4.5 電阻轉換機制之討論 43
4.6 與文獻之比較 44
4.7 未來研究方向 45
第5章 結論 57
第6章 參考文獻 59
[1] 市場分析公司BCC (Business Communications Co.), “Non-volatile memory markets”, Report code: SMC060A, 2005.
http://www.bccresearch.com/report/SMC060A.html
[2] 高士,“非揮發性記憶體名日之星-快閃IC「RRAM」發展動向”,零組件雜誌,第78-88頁,2010。
[3] J. L. Moll and Y. Tarui, “A new solid state memory resistor,” IEEE Trans. Electron Device, vol. 10, no. 5, pp.338-339, Sep. 1963.
[4] 徐夢嵐、李鴻鈞,“鐵電記憶體在新一代電子電能表中的應用”,電子工程專輯,2010。
http://www.eettaiwan.com/ART_8800622969_628626_TA_24dbd3d4.HTM
[5] 李思毅,“鐵電記憶體的前瞻與挑戰”,電子月刊,鐵電記憶元件特輯,第8卷,第4期,第128-139頁,2002。
[6] 葉林秀、李佳謀、徐明豐、吳德和,“磁阻式隨機存取記憶體技術的發展—現在與未來”,物理雙月刊,第26卷,第4期,第607-619頁,2004。
[7] 鍾朝安,“淺談相變化記憶體”, 奈米電子共同使用者聯盟雙月Newsletter,第一期,第12-20頁,2002。
[8] 劉志益、曾俊元,“電阻式非揮發性記憶體之近期發展”,電子月刊,第11卷,第4期,第182-189頁,2005。
[9] C. Sire, S. Blonkowski, M.J. Gordon, and T. Baron, “Statistics of electrical breakdown field in HfO2 and SiO2 films from millimeter to nanometer length scales,” Appl. Phys. Lett., vol. 91, no. 24,. 2007, # 242905.
[10] L. Chen, Y. Xu, Q.-Q. Sun, H. Liu, J.-J. Gu, S.-J. Ding, and D. W. Zhang, “Highly uniform bipolar resistive switching with Al2O3 buffer layer in robust NbAlO-based RRAM,” IEEE Electron Device Lett., vol. 31, no. 4, pp. 356-358, April 2010.
[11] J. W. Seo, J.-W. Park, K. S. Lim, S. J. Kang, Y. H. Hong, J. H. Yang, L. Fang, G. Y. Sung, and H.-K. Kim, “Transparent flexible resistive random access memory fabricated at room temperature,” Appl. Phys. Lett., vol. 95, no. 13, 2009, # 133508.
[12] W. H. Guan, S. B. Long, Q. Liu, M. Liu, and W. Wang, “Nonpolar nonvolatile resistive switching in Cu doped ZrO2,” IEEE Electron Device Lett., vol. 29, no. 5, pp. 434-437, May 2008.
[13] S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D.-S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J.-S. Kim, J. S. Choi, and B. H. Park, “Reproducible resistance switching in polycrystalline NiO films,” Appl. Phys. Lett., vol. 85, no. 23, pp. 5655-5657, 2004.
[14] I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D.-S. Suh, J. C. Park, S. O. Park, H. S. Kim, I. K. Yoo, U-In Chung, and J. T. Moon, “Highly scalable onvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses,” in IEDM Tech. Dig., pp. 587-590, 2004.
[15] C. Rohde, B. J. Choi, D. S. Jeong, S. Choi, J.-S. Zhao, and C. S. Hwang, “Identification of a determining parameter for resistive switching of TiO2 thin films,” Appl. Phys. Lett., vol. 86, no. 26, 2005, # 262907.
[16] H. B. Lv, M. Wang, H. J. Wan, Y. L. Song, W. J. Luo, P. Zhou, T. G. Tang, Y. Y. Lin, R. Huang, S. Song, J. G. Wu, H. M. Wu, and M. H. Chi, “Endurance enhancement of Cu-oxide based resistive switching memory with Al top electrode,” Appl. Phys. Lett., vol. 94, no. 21, 2009, # 213502.
[17] M. Yin, P. Zhou, H. B. Lv, J. Xu, Y. L. Song, X. F. Fu, T. A. Tang, B. A. Chen, and Y. Y. Lin, “Improvement of resistive switching in CuxO using new RESET mode,” IEEE Electron Device Lett., vol. 29, no. 7, pp. 681-683, Jul. 2008.
[18] C.-Y. Lin, C.-Y. Wu, C.-Y. Wu, T.-C. Lee, F.-L. Yang, C. Hu, and T.-Y. Tseng, “Effect of top electrode material on resistive switching properties of ZrO2 film memory devices,” IEEE Electron Device Lett., vol. 28, no. 5, pp. 366-368, May 2007.
[19] 唐立權、黃中垚、張振雄、李明憲,“第一原理計算鈣鈦礦結構三元鹵化物之二階非線性光學係數”,物理雙月刊,第27卷,第4期,第572-577頁,2005。
[20] S. Tsui, A. Baikalov, J. Cmaidalka, Y. Y. Sun, Y. Q. Wang, Y. Y. Xue, C. W. Chu, L. Chen, and A. J. Jacobson, “Field-induced resistive switching in metal-oxide interfaces,” Appl. Phys. Lett., vol. 85, no. 2, pp. 317-319, 2004.
[21] C.-C. Lin, B.-C. Tu, C.-C. Lin, C.-H. Lin, and T.-Y. Tseng, “Resistive switching mechanisms of V-doped SrZrO3 memory films,” IEEE Electron Device Lett., vol. 27, no. 9, pp. 725-727, Sep. 2006.
[22] W. H. Guan, M. Liu, S. B. Long, Q. Liu, and W. Wang, “On the resistive switching mechanisms of Cu/ZrO2:Cu/Pt,” Appl. Phys. Lett., vol. 93, no. 22, 2008, # 223506.
[23] H. W. Zhang, L. F. Liu, B. Gao, Y. J. Qiu, X. Y. Liu, J. Lu, R. Q. Han, J. F. Kang, and B. Yu, “Gd-doping effect on performance of HfO2 based resistive switching memory devices using implantation approach,” Appl. Phys. Lett., vol. 98, no. 4, 2011, # 042105.
[24] B. Sun, L. F. Liu, Y. Wang, D.D. Han, X. Y. Liu, R.Q. Han, and J. F. Wang, “Bipolar resistive switching behaviors of Ag/Si3N4/Pt memory device,” in Int. Conf. Solid-State Integrated Circuits Tech.﹙ICSICT﹚, pp. 925-927, 2008.
[25] M.-C. Chen, T.-C. Chang, C.-T. Tsai, S.-Y. Huang, S.-C. Chen, C.-W. Hu, S. M. Sze, and M.-J. Tsai, “Influence of electrode material on the resistive memory switching property of indium gallium zinc oxide thin films,” Appl. Phys. Lett., vol. 96, no. 26, 2010, # 262110.
[26] U. Russo, D. Ielmini, C. Cagli, and A. L. Lacaita, “Self-accelerated thermal dissolution model for reset programming in unipolar resistive-switching memory (RRAM) devices,” IEEE Trans. Electron Devices, vol. 56, no. 2, pp. 193-200, Feb. 2009.
[27] L. Goux, J. G. Lisoni, M. Jurczak, D. J. Wouters, L. Courtade, and Ch. Muller, “Coexistence of the bipolar and unipolar resistive-switching modes in NiO cells made by thermal oxidation of Ni layers,” J. Appl. Phys., vol. 107, no. 2, 2010, # 024512.
[28] A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, “Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface,” Appl. Phys. Lett., vol. 85, no. 18, pp. 4073-4075, 2004.
[29] T. Fujii, M. Kawasaki, A. Sawa, H. Akoh, Y. Kawazoe, and Y. Tokura, “Hysteretic current–voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3/SrTi0.99Nb0.01O3,” Appl. Phys. Lett., vol. 86, no. 1, 2005, # 012107.
[30] A. Chen, S. Haddad, Y.-C. Wu, T.-N. Fang, Z. Lan, S. Avanzino, S. Pangrle, M. Buynoski, M. Rathor, W. Cai, N. Tripsas, C. Bill, M. VanBuskirk, and M. Taguchi, “Non-volatile resistive switching for advanced memory applications,” in IEDM Tech. Dig., pp. 746-749, 2005.
[31] S. M. Sze, Physics of Semiconductor Devices, 2nd ed., New York: John Wiley & Sons, pp. 402-407, 1981.
[32] M. A. Lampert and P. Mark, Current Injection in Solids, New York: Academic, pp. 14-30, 1970.
[33] 汪建民,“材料分析”,中國材料科學學會,第267頁,1998。
[34] C.-Y. Lin, C.-Y. Wu, C.-Y. Wu, T.-Y. Tseng, and C. M. Hu, “Modified resistive switching behavior of ZrO2 memory films based on the interface layer formed by using Ti top electrode,” J. Appl. Phys., vol. 102, no. 9, 2007, # 094101.
[35] J. H. Yoon, K. M. Kim, M. H. Lee, S. K. Kim, G. H. Kim, S. J. Song, J. Y. Seok, and C. S. Hwang, “Role of Ru nano-dots embedded in TiO2 thin films for improving the resistive switching behavior,” Appl. Phys. Lett., vol. 97, no. 23, 2010, # 232904.
[36] F. Bakhtiari, and E. Darezereshki, “One-step synthesis of tenorite (CuO) nano-particles from Cu4(SO4)(OH)6 by direct thermal-decomposition method,” Mater. Lett., vol. 65, no. 2, pp. 171-174, Jan. 2011.
[37] R. Dong, D. S. Lee, W. F. Xiang, S. J. Oh, D. J. Seong, S. H. Heo, H. J. Choi, M. J. Kwon, S. N. Seo, M. B. Pyun, M. Hasan, and H. S. Hwang, “Reproducible hysteresis and resistive switching in metal-CuxO-metal heterostructures,” Appl. Phys. Lett., vol. 90, no. 4, 2007, # 042107
[38] L. Courtade, Ch. Turquat, J. G. Lisoni, L. Goux, D. J. Wouters, D. Deleruyelle, and Ch. Muller, “Integration of resistive switching NiO in small via structures from localized oxidation of nickel metallic layer,” in European Solid-State Device Research Conf. ﹙ESSDRC﹚, 2008, pp. 218-221.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文