跳到主要內容

臺灣博碩士論文加值系統

(100.28.227.63) 您好!臺灣時間:2024/06/14 23:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許藝薰
研究生(外文):Yi-Syun Syu
論文名稱:可調通道間距與功率均等之多波道光纖雷射之探討
論文名稱(外文):The Study of Tunable Channel Spacing and Power Equalized Multi-Wavelength Fiber Laser
指導教授:董正成
指導教授(外文):Jeng-Chemg Dung
學位類別:碩士
校院名稱:國立東華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:132
中文關鍵詞:多波道光纖雷射可調雷射模態競爭模態抑制均勻拓寬譜線
外文關鍵詞:multi-wavelength fiber lasertunable lasermode competitionmode suppressionhomogeneous line broadening
相關次數:
  • 被引用被引用:6
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
由於現今高速率傳輸的WDM 系統,因此我們欲架構一多波道的雷射光源當作系統訊號源。此外為了增加使用上的彈性,我們發展出一多波長可調通道間距與功率可均等化的光纖雷射架構。
我們的架構由一個2´4 與1´2 coupler、四條光纖光柵FBG、VOA 與EDF,一個1480 nm 的幫浦光和光循環器組成。以2´4 coupler 為基礎所構成的四個線形共振腔的結合巧妙的避開均勻拓寬介質所造成的模態壓制。加上任一模態振盪於不同的EDF 中,位處不同共振腔中的VOA 可輕易地掌控每一模態的雷射功率,最後由1´2 coupler 匯總每一模態之雷射輸出。故此多波道雷射類似於單波道雷射操作。而其它基於單增益介質所組成的多波長雷射架構都呈現相當顯著的抑制量,最佳效果為6 dB 的抑制量。
此外,我們也拉長FBG 以達到切換通道的效果。為了符合ITU(International Telecommunication Unio)所規範的通道間距,我們將Channel 2 與Channel 3 每0.4 nm 位移一次,每次的位移雖然使通道功率略微改變,但影響不大。通道切換後的雷射功率經VOA 調整後,每波道功率皆可控制在5.7 dBm 的水平,且所有通道間之功率差在0.5 dB 以內,此有賴於類似單波道操作的特性。因此我們完成了一可調通道間距與可功率均等的多波道光纖雷射。此利用在WDM 傳輸系統上為一極具彈性的多波道可調光源。
Due to the high speed rate of the WDM transmission system, we would like to construct a multi-channel laser as the signal light source. We develop a multi-wavelength fiber laser which could be tuned channel spacing and equalized laser power to offer a flexible design.
Our configuration is composed of a 2´4 and 1´2 coupler, four FBGs, VOAs and EDFs, a pumping of 1480 nm and circulator. Four linear cavities based on 2´4 coupler would avoid mode suppression intelligently. Each mode oscillates in different EDF and VOA controls each mode power easily. The 1´2 coupler extracts each channel from the output port. Thus the multi-wavelength laser operates as single-wavelength laser. Other multi-wavelength fiber laser configurations that based on single gain meadium are present notably suppression and the best performance with suppression of 6 dB.
Otherwise we strain FBG to change the channel. To conform the ITU standard, we shift Channel 2 and Channel 3 for every 0.4 nm. The shifting doesn’t affect the channel power remarkably. After the shifting, each channel power could be maintained on the level of 5.7 dBm by tune the VOA and the power difference below to 0.5 dB within all the channels. This performance depends on the single-channel-like operation. Therefore we complete a tunable channel spacing and power equalized multi-wavelength fiber laser. This is a flexible light source when it is applied on WDM system.
致謝 .................................................................................................................................. I
摘要 ................................................................................................................................ II
Abstract ......................................................................................................................... III
目錄 ............................................................................................................................... IV
圖目錄 .......................................................................................................................... VII
表目錄 ............................................................................................................................ XI
第一章 序論 .................................................................................................................... 1
1.1 研究背景 ................................................................................................................ 1
1.2 研究動機 ................................................................................................................ 2
1.3 論文內容編排與架構 ............................................................................................ 3
第二章 雷射與光放大器 ................................................................................................ 5
2.1 各類放大器 ............................................................................................................ 5
2.1.1 光放大的相關機制與基礎介紹 ..................................................................... 5
2.1.1.1 自發與受激輻射(Spontaneous and Stimulated Emission) ...................... 5
2.1.1.2 放大器增益頻譜與頻寬(Gain Spectrum and Bandwidth) ...................... 8
2.1.1.3 放大器雜訊(Amplifier Noise) ................................................................. 9
2.1.2 雷射機制與特性 ............................................................................................ 11
2.1.2.1 光的回授與雷射振盪(Optical Feedback and Oscillate Laser)............... 11
2.1.2.2 愛因斯坦關係式(Einstein Relations) .................................................... 13
2.1.2.3 據量反轉(Population Inversion) ............................................................ 15
2.1.2.4 門檻條件(Threshold Conditions) ........................................................... 17
2.1.2.5 譜線均勻拓寬(Homogeneous Line Broadening) .................................. 18
2.1.2.6 非譜線均勻拓寬(Inhomogeneous Line Broadening) ............................ 21
2.1.2.7 均勻拓寬介質中的振盪(Oscillate In Homogeneous Broadening Medium)................................ 23
2.1.2.8 非均勻拓寬介質中的振盪(Oscillate In Inhomogeneous Broadening Medium) ......................... 26
2.1.3 半導體光放大器(Semiconductor Optical Amplifiers) ................................. 31
2.1.3.1Fabry-Perot SOA ..................................................................................... 31
2.1.3.2Traveling-wave SOA ............................................................................... 32
2.1.3.3 抗反射 .................................................................................................... 32
2.1.4 拉曼放大器(Raman Amplifiers) ................................................................... 33
2.1.4.1 受激拉曼散射(Stimulated Raman Scattering) ....................................... 33
2.1.4.2 拉曼增益頻寬(Raman Gain and Bandwidth) ........................................ 34
2.1.4.3 拉曼增益飽和(Raman Gain Saturation) ................................................ 35
2.1.4.4 拉曼放大器雜訊(Noise in Raman Amplifier) ....................................... 37
2.1.4.5 拉曼幫浦光之設計(Raman Pump Design) ........................................... 38
2.1.4.6 拉曼增益之極化敏感(The Polarization Sensitive Raman Gain) .......... 40
2.1.5 摻鉺光纖放大器(Erbium-Doped Fiber Amplifiers) ..................................... 41
2.1.5.1 幫浦光特性(The Features of Pump) ...................................................... 41
2.1.5.2 增益頻譜(Gain Spectrum) ..................................................................... 43
2.1.5.3 理論之增益(Theoretical Gain) .............................................................. 43
2.1.5.4 雜訊(Noise) ............................................................................................ 45
第三章 光纖通訊系統之發展與介紹 .......................................................................... 49
3.1 光纖通訊之發展史 .............................................................................................. 49
3.2 光在光纖內之本特性 .......................................................................................... 50
3.2.1 光纖的損耗 .................................................................................................. 50
3.2.1.1 物質吸收損耗 (Material absorption losses)......................................... 50
3.2.1.2 散射損耗 (Scattering losses) ................................................................ 52
3.2.1.3 光纖彎曲損耗 (Bending losses) .......................................................... 53
3.2.1.4 總損耗 (Total losses) ............................................................................ 54
3.2.2 色散 .............................................................................................................. 55
3.2.2.1 模間色散(Intermodal Dispersion) ......................................................... 56
3.2.2.2 模內色散(Intramodal Dispersion) ......................................................... 58
3.2.2.3 其它色散(Other Dispersion) ................................................................. 61
3.2.2.4 總色散(Total Dispersion) ...................................................................... 63
3.2.2.5 色散平坦光纖(Dispersion Flattened Fibers) ......................................... 65
3.2.3 光的偏振 ...................................................................................................... 66
3.2.3.1 極化特性 ................................................................................................ 67
3.2.3.2 光纖雙折射特性 .................................................................................... 68
3.2.3.3 極化保持光纖 ........................................................................................ 71
第四章 常見元件之特性與工作原理 .......................................................................... 73
4.1 常見元件 .............................................................................................................. 73
4.1.1 光纖耦合器(Fiber Couplers) ......................................................................... 73
4.1.1.1 三與四埠耦合器(2×1 and 2×2 couplers) ............................................... 74
4.1.1.2 星狀耦合器(Star couplers)..................................................................... 76
4.1.2 光纖布拉格光柵(Fiber Bragg Gratings) ...................................................... 78
4.1.3 波長多工與解多工器(Multiplexer and Demultiplexer) ............................... 81
4.1.4 隔離器(Isolator) ............................................................................................ 83
4.1.5 循環器(Circulator) ........................................................................................ 84
4.1.6 可調光衰減器(Variable Optical Attenuator)................................................. 86
4.1.7 極化控制器(Polarization Controller) ............................................................ 86
第五章 多波長雷射共振架構之特性探討 .................................................................. 87
5.1 探討架構Ⅰ .......................................................................................................... 87
5.1.1 架構介紹 ....................................................................................................... 87
5.1.2 輸出頻譜 ....................................................................................................... 88
5.2 探討架構Ⅱ .......................................................................................................... 92
5.2.1 架構介紹 ....................................................................................................... 92
5.2.2 輸出頻譜 ....................................................................................................... 93
5.3 探討架構Ⅲ .......................................................................................................... 95
5.3.1 架構介紹 ....................................................................................................... 95
5.3.2 輸出頻譜 ....................................................................................................... 96
第六章 改善多波長雷射之模態壓制與主實驗可調雷射架構 .................................. 99
6.1 相關理論回顧與分析 .......................................................................................... 99
6.2 探討架構Ⅳ ........................................................................................................ 105
6.2.1 架構介紹 ..................................................................................................... 105
6.2.2 輸出頻譜 ..................................................................................................... 107
6.3 主實驗架構 ......................................................................................................... 110
6.3.1 架構介紹 ...................................................................................................... 110
6.3.2 功率均等化前之輸出頻譜 .......................................................................... 114
6.3.3 功率均等化之輸出頻譜 .............................................................................. 118
6.3.4 波道位移與功率均等化之輸出頻譜 ......................................................... 120
第七章 討論與未來發展 ............................................................................................ 125
7.1 討論與結論 ........................................................................................................ 125
7.2 建議架構 ............................................................................................................ 126
參考文獻 ...................................................................................................................... 129
[1] A. Yin, L. Li and X. Zhang, “Analysis of modulation format in the 40 Gbit/s optical communication system,” OPTIK vol. 121, no. 17, pp. 1550-1557, 2010.
[2] J-X. Cai, M. Nissov, C. R. Davidson, A. N. Pilipetskii and G. Mohs, “Long-haul 40 Gb/s DWDM transmission with aggregate capacities exceeding 1 Tb/s,” Journal of Lightwave Technology, vol. 20, no. 12, December 2002.
[3] F. M. Mims III, “Alexander graham bell and the photophone: The centennial of the invention of light-wave communications, 1880-1980,” Optics News 6, no. 1, pp. 8-16, 1980.
[4] W. S. Huxford and J. R. Platt, “Survey of near infra-red communication systems,”Journal of the Optical Society of America, vol. 38, no. 3, pp. 253-268, 1948.
[5] T. H. Maiman, “Stimulated optical radiation in ruby,” Nature, vol. 187, no. 4736, pp. 493-494, August 6, 1960.
[6] M. I. Amanti, M. Fischer, G. Scalari, M. Beck and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nature Photonics, vol. 3, pp. 586-590, Oct. 2009.
[7] D. F. Siriani and K. D. Choquette, “In-phase, coherent photonic crystal vertical-cavity surface-emitting laser arrays with low divergence,” Electronics Letters, vol. 46, pp. 712-713, May 13 2010.
[8] P. P. Iannone, K. C. Reichmann and N. J. Frigo, “Broadcast digital video delivered over WDM passive optical networks,” IEEE Photonics Technology Letters, vol. 8, pp. 930-932, 1996.
[9] G. Jeong and J. W. Goodman, “Long-distance parallel data link using WDM transmission with bit-skew compensation,” Journal of Lightwave Technology, vol. 14, pp. 655-660, 1996.
[10] G-K. Chang, A. Chowdhury, Z. Jia, H-C. Chien, M-F. Huang, J. Yu and G. Ellinas, “Key technologies of WDM-PON for future converged optical broadband access networks [Invited],” Journal of Optical Communications and Networking, vol. 1, pp. C35-C50, 2009.
[11] J. M. Senior, “Optical fber communications principles and practice third edition,”Prentice Hall, 2009.
[12] W. T. Silfvast, “Laser fundamentals,” Cambridge University Press, 1996.
[13] C. C. Davis, “Lasers and electro-optics,” Cambridge University Press, 1996.
[14] M. J. O’Mahony, “Semiconductor laser optical amplifiers for use in future fiber systems,” Journal of Lightwave Technology, vol. 6, no. 4, pp. 531-544, April 1988.
[15] S. Namiki and Y. Emori, “Ultrabroad-band Raman amplifiers pumped and gain-equalized by Wavelength-Division-Multiplexed high-power laser diodes,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 7, no. 1, pp. 3-16, January/February 2001.
[16] M. Ikeda ”Stimulated Raman amplification characteristics in long span single-mode silica fibers,” Optics Communications, vol. 39, no. 3, pp. 148-152, 1 October 1981.
[17] J. Bromage, “Raman amplification for fiber communications systems,” Journal of Lightwave Technology, vol. 22, no. 1, pp. 79-93, January 2004.
[18] G. P. Agrawal, “Fiber-optic communication systems, third edition,” Wiley-Interscience, 2002.
[19] M. Shimizu, M. Yamada, M. Horiguchi, T. Takeshita and M. Okayasu,“Erbium-doped fibre amplifiers with an extremely high gain coefficient of 11 dB/mw,” Electronics Letters, vol. 26, no. 20, pp. 1641-1643, August 1990.
[20] A. A. M. Saleh, R. M. Jopson, J. D. Evankow and J. Aspell, “Modeling of gain in erbium-doped fiber amplifiers,” IEEE Photonics Technology Letters, vol. 2, no. 10, pp. 714-717, October 1990.
[21] C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” Journal of Lightwave Technology, vol. 9, no. 2, pp. 271-283, February 1991.
[22] K. Kikuchi, “Generalised formula for optical-amplifier noise and its application to erbium-doped fibre amplifiers,” Electronics Letters, vol. 26, no. 22, pp. 1851-1853, October 1990.
[23] K. C. Kao and G. A. Hockham, “Dielectric-fibre surface waveguides for optical frequencies,” Optoelectronics, Proc. IEE, vol. 113, no. 7, pp. 1151-1158, July 1966.
[24] D. Dahan, U. Mahlab and D. Levy, “Stimulated brillouin scattering based in-band OSNR monitoring technique for 40 Gps and 100 Gps optical transparent networks,” Optics Express, vol. 18, no. 15, pp. 15769-15783, Jul 19 2010.
[25] D. Breuer, K. Jiirgensen, F. Kippers, A. Mattheus, I. Gabitov and S. K. Turitsyn,“Optimal schemes for dispersion compensation of standard monomode fiber based links,” Optics Communications, vol. 140, pp. 15-18, 15 July 1997.
[26] C. Das, U. Gaubatz, E. Gottwald, K. Kotten, L. Rapp, C.-J. Weiske, B. Hein, F. Kiippers and A. Mattheus, “Straightforward upgrading of transmission systems to 4 x 10Gbit/s through 617 km and 8 x 10Gbit/s through 412km of SMF,” Electronics Letters, vol. 31, no. 16, pp. 1374-1375, August 1995.
[27] B. Dabarsyah, C. S. Goh, S. K. Khijwania, S. Y. Set, K. Katoh and K. Kikuchi,“Adjustable dispersion-compensation devices with wavelength tunability based on enhanced thermal chirping of fiber bragg gratings,” IEEE Photonics Technology Letters, vol. 15, no. 3, pp. 416-418, March 2003.
[28] L. Dong, J. L. Cruz, L. Reekie and J. L. Archambault, “Tuning and chirping fiber bragg gratings by deep etching,” IEEE Photonics Technology Letters, vol. 7, no. 12, December 1995.
[29] F. Ouellette, “Dispersion cancellation using linearly chirped bragg grating filters in optical waveguides,” Optics Letters, vol. 12, pp. 847-849, 1987.
[30] R. L. Hartman, J. C. Dyment, C. J. Hwang, and M. Kuhn, “Continuous operation of GaAs-GaxAl1-xAs double heterostructure lasers with 30℃ half-lives exceeding 1000 h,” Appl. Phys. Lett, vol. 23, no. 4, pp. 181-183, August 1973.
[31] A. R. Goodwin, J. R. Peters, M. Pion, and W. O. Bourne, “GaAs lasers with consistently low degradation rates at room temperature,” Appl. Phys. Lett, vol. 30, no. 2, pp. 110-113, January 1977.
[32] S. E. Miller, “Overview and summary of progress,” in S. E. Miller and I. P. Kaminow (Eds), Optical Fiber Telecommunications Ⅱ, pp. 1-27, Academic Press, 1988.
[33] T. Miya, Y. Terunuma, T. Hosaka and T. Miyashita, “Ultimate low-loss single-mode fibre at 1.55 μm,” Electronics Letters, vol. 15, no. 4, pp. 106-108, Feb. 1979.
[34] D.B. Keck, R.D. Maurer and P.C. Schultz, “On the ultimate lower limit of attenuation in glass optical waveguides,” Appl. Phys. Lett, vol. 22, no.7, pp. 307-309, 1 April 1973.
[35] J. C. Palais, “Fiber optic communications, fifth edition,” Prentice Hall, 2005.
[36] R. Olshansky, “Propagation in glass optical waveguides,” Reviews of Modern Physics, vol. 51, no. 2, pp. 341-369, April 1979.
[37] S. O. Kasap, “Optoelectronics and photonics,” Prentice Hall, 2001.
[38] R. Olshansky and N. Y. Addison, “Method of making optimal index profile for multicomponent nonlinear glass optical waveguide,” U.S. Patent 4,478,623 Oct. 23 1984.
[39] D. Gloge, “Dispersion in weakly guiding fibers,” Applied Optics, vol. 10, no. 11, pp. 2442-2445, 1971.
[40] W. A. Gambling, H. Matsumura and C. M. Ragdale, “Mode dispersion,material dispersion and profile dispersion in graded-index single-mode fibres,” Microwaves, Optics and Acoustics, vol. 3, no. 6, Nov. 1979.
[41] Sei-J. Jang, J. Sanchez, K. D. Pohl and L. D. L’esperance, “Fundamental mode size and bend sensitivity of graded and step-index single-mode fibers with zero-dispersion near 1.55 μm,” Journal of Lightwave Technology, vol. LT-2, no. 3, pp. 312-316, June 1984.
[42] H.-T. Shang, T. A. Lenahan, P. F. Glodis and D. Kalish, “Design and fabrication of dispersion-shifted depressed-clad triangular-profile (DDT) single-mode fibre,” Electronics Letters, vol. 21, no. 5, pp. 201-203, February 1985.
[43] I. P. Kaminow, “Polarization in optical fibers,” IEEE Journal of Quantum Electronics, vol. QE-17, no. 1, pp. 15-22, Jan. 1981.
[44] G. P. Agrawal, “Applications of nonlinear fiber optics,” Academic Press, 2001.
[45] J. Wilson and J. Hawkes, “Optoelectronics, third edition,” Prentice Hall Europe.
[46] F. Mitschke, “Fiber optics,” Springer-Verlag Berlin Heidelberg, 2009.
[47] S. Yamashita and K. Hotate, “Multiwavelength erbium-doped fibre laser using intracavity etalon and cooled by liquid nitrogen,” Electronics Letters, vol. 32 no. 14, pp. 1298–1299, Jul. 1996.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊