跳到主要內容

臺灣博碩士論文加值系統

(3.235.56.11) 您好!臺灣時間:2021/07/29 04:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林恆毅
研究生(外文):Lin, Hengyi
論文名稱:人類牙齦幹細胞之特性與年齡相關的影響
論文名稱(外文):Characteristic of human gingival stem cells and the age-related effect
指導教授:傅鍔傅鍔引用關係
指導教授(外文):Fu, Earl
口試委員:傅鍔聶鑫沈一慶江正陽涂筱培
口試委員(外文):Fu, EarlNieh, ShinShen, EchinChiang, ChengyangTu, Hsiaopei
口試日期:2011-05-31
學位類別:碩士
校院名稱:國防醫學院
系所名稱:牙醫科學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:59
中文關鍵詞:牙齦幹細胞聚落形成單位多向分化老化p53基因活性氧化物
外文關鍵詞:gingival stem cellcolony forming unitsmultipotentagingp53 genereactive oxygen species
相關次數:
  • 被引用被引用:0
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,當各種牙科幹細胞陸續分離出之後,其所取得的便利性也逐漸會成為應用上的考量之一。牙齦組織,因其再生性良好,也容易在一般門診的手術中取得利用,而具有相當不錯的發展性。另外,由於可能會影響幹細胞在再生醫學上的應用以及可能和一些老化相關疾病的關聯,幹細胞與老化之間的相關議題,也逐漸引起大量的關注。
我們於取得分離上皮後的牙齦結締組織,以膠原蛋白酶處理至組織完全溶解。組織液離後,以70μm 微細孔洞的過濾得到單一細胞懸浮液。此懸浮液經細胞計數後,以104 cells / 10 cm dish 和 105 cells / 10 cm dish兩種種植密度進行培養並冷凍保存。所分離出的細胞則進行細胞聚落形成分析、聚落倍增時間及細胞表面標誌的檢測。同時也進行成骨、脂肪及神經分化的研究。最後,則以不同捐贈者的年齡進行分組,測定細胞中p53基因及活性氧化物的表現,來分析年齡老化對所分離出之細胞的影響。
研究結果中,本實驗成功的由人類的牙齦組織分離出具有多向分化能力的牙齦幹細胞。我們所分離出的細胞穩定高比率表現出幾項間葉幹細胞的表面標誌,也成功引導出成骨、脂肪及神經的分化,並能產生神經球。
而關於年齡的老化對所取得幹細胞的影響,在本實驗中就細胞的聚落形成分析、族群倍增時間、分化能力以、p53基因表現以及細胞內活性氧化物的含量皆無發現在年輕組及老年組之間明顯的差異。

Background: As the stem cells from different oral tissue have been isolated, the accessibility of the tissues will soon be taken into consideration. The gingival tissue, which is more easily gained than other tissues from our daily practice at dental department may be a proper origin. Recently, the aging of stem cells became a raising topic, which may influence the application of the cells in regenerative medicine or play some roles in age-related diseases..
Materials & Methods: Human gingival tissue will be collected from the gingivae obtained from the patients in the Dental Department of Tri-Service General Hospital. For colony forming unit system, the gingival cell suspensions will be seeded into ten 10-cm culture dishes with medium at low density (1 x 105 cells / dish). Growth curve is obtained after the cells are serially sub-cultured. The cells at passage 2-4 are tested for osteogenic, adipogenic and neural differentiation. The expression level of p53 and the generation of reactive oxygen species of the stem cells will be examined and their relation with the age will also be determined.
Results: Our data suggested that osteogenic , adipogenic and neural differentiation could be observed from our isolated cells after induction. Alizarin Red positive staining suggest calcification was obtained after induction by osteogenic medium. Nestin, MAP-2, and GFAP positive staining by immunocytochemistry methods showed neural differentiation. CFU assays showed that the more colonies counted may lead to the higher degree of calcification. However in our limited study, no obvious relationship between donor‘s age and its effect on differentiation and proliferation of our isolated cells could be approved.

正文目錄

第一章 緒論及目的 2
第二章 材料與方法 18
第三章 實驗結果 30
第四章 實驗討論 36
第五章 結論 39
第六章 參考文獻 55


1.Fischbach GD, Fischbach RL. Stem cells: science, policy, and ethics. J Clin Invest,114:1364-1370,2004.
2.Rando TA. Stem cells, ageing and the quest for immortality. Nature,441:1080-1086,2006.
3.Silverio KG, Benatti BB, Casati MZ, Sallum EA, Nociti FH, Jr. Stem cells: potential therapeutics for periodontal regeneration. Stem Cell Rev,4:13-19,2008.
4.Wagers AJ, Weissman IL. Plasticity of adult stem cells. Cell,116:639-648,2004.
5.Bartold PM, Shi S, Gronthos S. Stem cells and periodontal regeneration. Periodontol 2000,40:164-172,2006.
6.Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A,97:13625-13630,2000.
7.Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet,3:393-403,1970.
8.Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet,20:263-272,1987.
9.Gronthos S, Brahim J, Li W, et al. Stem cell properties of human dental pulp stem cells. J Dent Res,81:531-535,2002.
10.Seo BM, Miura M, Gronthos S, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet,364:149-155,2004.
11.Zhang Q, Shi S, Liu Y, Uyanne J, Shi Y, Le AD. Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J Immunol,183:7787-7798,2009.
12.Techawattanawisal W, Nakahama K, Komaki M, Abe M, Takagi Y, Morita I. Isolation of multipotent stem cells from adult rat periodontal ligament by neurosphere-forming culture system. Biochem Biophys Res Commun,357:917-923,2007.
13.Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science,255:1707-1710,1992.
14.Waddington RJ, Youde SJ, Lee CP, Sloan AJ. Isolation of distinct progenitor stem cell populations from dental pulp. Cells Tissues Organs,189:268-274,2009.
15.Pountos I, Corscadden D, Emery P, Giannoudis PV. Mesenchymal stem cell tissue engineering: techniques for isolation, expansion and application. Injury,38 Suppl 4:S23-33,2007.
16.Huang GT, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res,88:792-806,2009.
17.Batouli S, Miura M, Brahim J, et al. Comparison of stem-cell-mediated osteogenesis and dentinogenesis. J Dent Res,82:976-981,2003.
18.Tomar GB, Srivastava RK, Gupta N, et al. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine. Biochem Biophys Res Commun,393:377-383,2010
19.de Mendonca Costa A, Bueno DF, Martins MT, et al. Reconstruction of large cranial defects in nonimmunosuppressed experimental design with human dental pulp stem cells. J Craniofac Surg,19:204-210,2008.
20.Liu Y, Zheng Y, Ding G, et al. Periodontal ligament stem cell-mediated treatment for periodontitis in miniature swine. Stem Cells,26:1065-1073,2008.
21.Ding G, Liu Y, Wang W, et al. Allogeneic periodontal ligament stem cell therapy for periodontitis in swine. Stem Cells,28:1829-1838,2010
22.Wang F, Yu MJ, Yan XL, et al. Gingiva-derived mesenchymal stem cells-mediated therapeutic approach for bone tissue regeneration. Stem Cells Dev,2011
23.Mitrano TI, Grob MS, Carrion F, et al. Culture and characterization of mesenchymal stem cells from human gingival tissue. J Periodontol,81:917-925,2010
24.Bachle M, Kohal RJ. A systematic review of the influence of different titanium surfaces on proliferation, differentiation and protein synthesis of osteoblast-like MG63 cells. Clin Oral Implants Res,15:683-692,2004.
25.Schwartz Z, Lohmann CH, Oefinger J, Bonewald LF, Dean DD, Boyan BD. Implant surface characteristics modulate differentiation behavior of cells in the osteoblastic lineage. Adv Dent Res,13:38-48,1999.
26.Carneiro-Campos LE, Fernandes CP, Balduino A, Leite Duarte ME, Leitao M. The effect of titanium topography features on mesenchymal human stromal cells' adhesion. Clin Oral Implants Res,21:250-254,2010
27.Shapira L, Halabi A. Behavior of two osteoblast-like cell lines cultured on machined or rough titanium surfaces. Clin Oral Implants Res,20:50-55,2009.
28.Heo YY, Um S, Kim SK, Park JM, Seo B. Responses of periodontal ligament stem cells on various titanium surfaces. Oral Dis,2010
29.Mangano C, De Rosa A, Desiderio V, et al. The osteoblastic differentiation of dental pulp stem cells and bone formation on different titanium surface textures. Biomaterials,31:3543-3551
30.Kim SH, Kim KH, Seo BM, et al. Alveolar bone regeneration by transplantation of periodontal ligament stem cells and bone marrow stem cells in a canine peri-implant defect model: a pilot study. J Periodontol,80:1815-1823,2009.
31.Sloan AJ, Waddington RJ. Dental pulp stem cells: what, where, how? Int J Paediatr Dent,19:61-70,2009.
32.Murray PE, Kitasako Y, Tagami J, Windsor LJ, Smith AJ. Hierarchy of variables correlated to odontoblast-like cell numbers following pulp capping. J Dent,30:297-304,2002.
33.Miura M, Gronthos S, Zhao M, et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A,100:5807-5812,2003.
34.Iohara K, Zheng L, Ito M, Tomokiyo A, Matsushita K, Nakashima M. Side population cells isolated from porcine dental pulp tissue with self-renewal and multipotency for dentinogenesis, chondrogenesis, adipogenesis, and neurogenesis. Stem Cells,24:2493-2503,2006.
35.Prescott RS, Alsanea R, Fayad MI, et al. In vivo generation of dental pulp-like tissue by using dental pulp stem cells, a collagen scaffold, and dentin matrix protein 1 after subcutaneous transplantation in mice. J Endod,34:421-426,2008.
36.Huang GT, Yamaza T, Shea LD, et al. Stem/progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Eng Part A,16:605-615
37.Huang AH, Chen YK, Lin LM, Shieh TY, Chan AW. Isolation and characterization of dental pulp stem cells from a supernumerary tooth. J Oral Pathol Med,37:571-574,2008.
38.Huang AH, Chen YK, Chan AW, Shieh TY, Lin LM. Isolation and characterization of human dental pulp stem/stromal cells from nonextracted crown-fractured teeth requiring root canal therapy. J Endod,35:673-681,2009.
39.Lee SY, Chiang PC, Tsai YH, et al. Effects of cryopreservation of intact teeth on the isolated dental pulp stem cells. J Endod,36:1336-1340,2010
40.Silverio KG, Rodrigues TL, Coletta RD, et al. Mesenchymal stem cell properties of periodontal ligament cells from deciduous and permanent teeth. J Periodontol,81:1207-1215,2010
41.Duailibi SE, Duailibi MT, Zhang W, Asrican R, Vacanti JP, Yelick PC. Bioengineered dental tissues grown in the rat jaw. J Dent Res,87:745-750,2008.
42.Ohazama A, Modino SA, Miletich I, Sharpe PT. Stem-cell-based tissue engineering of murine teeth. J Dent Res,83:518-522,2004.
43.Volponi AA, Pang Y, Sharpe PT. Stem cell-based biological tooth repair and regeneration. Trends Cell Biol,20:715-722
44.Sethe S, Scutt A, Stolzing A. Aging of mesenchymal stem cells. Ageing Res Rev,5:91-116,2006.
45.Rao MS, Mattson MP. Stem cells and aging: expanding the possibilities. Mech Ageing Dev,122:713-734,2001.
46.Campisi J. Cancer, aging and cellular senescence. In Vivo,14:183-188,2000.
47.Knapowski J, Wieczorowska-Tobis K, Witowski J. Pathophysiology of ageing. J Physiol Pharmacol,53:135-146,2002.
48.Gao J, Dennis JE, Muzic RF, Lundberg M, Caplan AI. The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs,169:12-20,2001.
49.Krtolica A, Campisi J. Integrating epithelial cancer, aging stroma and cellular senescence. Adv Gerontol,11:109-116,2003.
50.Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell,120:513-522,2005.
51.Stolzing A, Scutt A. Age-related impairment of mesenchymal progenitor cell function. Aging Cell,5:213-224,2006.
52.Zhou S, Greenberger JS, Epperly MW, et al. Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell,7:335-343,2008.
53.Eruslanov E, Kusmartsev S. Identification of ROS using oxidized DCFDA and flow-cytometry. Methods Mol Biol,594:57-72,2010
54.Sohal RS, Mockett RJ, Orr WC. Mechanisms of aging: an appraisal of the oxidative stress hypothesis. Free Radic Biol Med,33:575-586,2002.
55.Royall JA, Ischiropoulos H. Evaluation of 2',7'-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch Biochem Biophys,302:348-355,1993.
56.Ubezio P, Civoli F. Flow cytometric detection of hydrogen peroxide production induced by doxorubicin in cancer cells. Free Radic Biol Med,16:509-516,1994.
57.Calenic B, Ishkitiev N, Yaegaki K, et al. Magnetic separation and characterization of keratinocyte stem cells from human gingiva. J Periodontal Res,45:703-708,2010
58.Tang L, Li N, Xie H, Jin Y. Characterization of mesenchymal stem cells from human normal and hyperplastic gingiva. J Cell Physiol,226:832-842,2011
59.Huang AH, Snyder BR, Cheng PH, Chan AW. Putative dental pulp-derived stem/stromal cells promote proliferation and differentiation of endogenous neural cells in the hippocampus of mice. Stem Cells,26:2654-2663,2008.
60.Zhang QZ, Su WR, Shi SH, et al. Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing. Stem Cells,28:1856-1868,2010
61.Ma D, Ma Z, Zhang X, et al. Effect of age and extrinsic microenvironment on the proliferation and osteogenic differentiation of rat dental pulp stem cells in vitro. J Endod,35:1546-1553,2009.
62.Ruzankina Y, Asare A, Brown EJ. Replicative stress, stem cells and aging. Mech Ageing Dev,129:460-466,2008.
63.Stern MM, Bickenbach JR. Epidermal stem cells are resistant to cellular aging. Aging Cell,6:439-452,2007.
64.Vigneron A, Vousden KH. p53, ROS and senescence in the control of aging. Aging (Albany NY),2:471-474,2010
65.Poyurovsky MV, Prives C. P53 and aging: A fresh look at an old paradigm. Aging (Albany NY),2:380-382,2010

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊