跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/07/30 03:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝孟迪
研究生(外文):Hsieh, Meng-Ti
論文名稱:酵母菌 Saccharomyces cerevisiae 內Cdc48 和輔因子Npl4-Ufd1 在熱逆境中維持細胞壁完整性對細胞週期G1進行之重要性
論文名稱(外文):Cdc48 and cofactors Npl4-Ufd1 are important for G1 progression during heat stress by maintaining cell wall integrity in Saccharomyces cerevisiae
指導教授:陳蕾惠
指導教授(外文):Chen, Rey-Huei
口試委員:呂俊毅陳蕾惠王廷方高承福王昭雯
口試委員(外文):Leu, Jun-YiChen, Rey-HueiWang, Ting-FangKao, Cheng-FuWang, Chao-Wen
口試日期:2011-04-25
學位類別:博士
校院名稱:國防醫學院
系所名稱:生命科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:47
中文關鍵詞:細胞週期熱逆境細胞壁完整性酵母菌
外文關鍵詞:CDC48Mpk1cell cycle G1Cell wall integritySaccharomyces cerevisiae
相關次數:
  • 被引用被引用:0
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
Cdc48屬於AAA (ATPase Associated with a variety of Activites ) ATPase三磷酸腺–
The ubiquitin-selective chaperone Cdc48, a member of the AAA (ATPase Associated with
various cellular Activities) ATPase superfamily, is involved in many processes, including
endoplasmic reticulum-associated degradation (ERAD), ubiquitin- and proteasome-mediated
protein degradation, and mitosis. Although Cdc48 was originally isolated as a cell cycle
mutant in the budding yeast Saccharomyces cerevisiae, its cell cycle functions have not been
well appreciated. I found that temperature-sensitive cdc48-3 mutant is largely arrested at
mitosis at 37oC, whereas the mutant is also delayed in G1 progression at 38.5oC. Reporter
assays show that the promoter activity of G1 cyclin CLN1, but not CLN2, is reduced in
cdc48-3 at 38.5oC. The cofactor npl4-1 and ufd1-2 mutants also exhibit G1 delay and reduced
CLN1 promoter activity at 38.5oC, suggesting that Npl4-Ufd1 complex mediates the function
of Cdc48 at G1. The G1 delay of cdc48-3 at 38.5oC is a consequence of cell wall defect that
over-activates Mpk1, a MAPK family member important for cell wall integrity in response to
stress conditions including heat shock. cdc48-3 is hypersensitive to cell wall perturbing agents
and is synthetic-sick with mutations in the cell wall integrity signaling pathway. My results
suggest that the cell wall defect in cdc48-3 is exacerbated by heat shock, which sustains Mpk1
activity to block G1 progression. Thus, Cdc48-Npl4-Ufd1 is important for the maintenance of
cell wall integrity in order for normal cell growth and division.
Table of content
Page
List of Tables… … … … … … … … … … … … … … … … … … … … … … … … … … … … ..… .II
List of Figures… … … … … … … … … … … … … … … … … … … … … … … … … … … … … III
List of Appendixes… … … … … … … … … … … … … … … … … … … … … … … … … .… … IV
中文摘要… … … … … … … … … … … … … … … … … … … … … .… … … … … … .… ..… ..V
Abstract … … … … … … … … … … … … … … … … … … … … … … … … … … … … .… … … VI
Introduction… … … … … … … … … … … … … … .… … … .… … … … … … … … … … … … … 1
Materials and Methods… … … … … … … … … … … … … … … … … … … .… … … … … … … 5
Result… … … … … … … … … … … … .… … … … … … … … … … … … … … … … … … … … 10
Discussion… … … … … … … .… … … … .… … … … … … … … … … … … … … … … … … … 18
Tables… … … … … … … … … … … … … ..… … … … .… … … .… ...… .… ..… .… .… .… ..… ..23
Figures… … … … … … … … … … … .… … … … … … ..… … … … … … … … … … … … … … 28
Reference… … … … … … … … … … … … … … … … … … … … … … .… … … … … … … … ..40
Appendix
References
1. Latterich M, Frohlich KU, Schekman R (1995) Membrane fusion and the
cell cycle: Cdc48p participates in the fusion of ER membranes. Cell 82:
885–893.
2. Bar-Nun S (2005) The role of p97/Cdc48p in endoplasmic reticulum-associated
degradation: from the immune system to yeast. Curr Top Microbiol Immunol
300: 95–125.
3. Rumpf S, Jentsch S (2006) Functional division of substrate processing cofactors
of the ubiquitin-selective Cdc48 chaperone. Mol Cell 21: 261–269.
4. Moir D, Stewart SE, Osmond BC, Botstein D (1982) Cold-sensitive cell-divisioncycle
mutants of yeast: isolation, properties, and pseudoreversion studies.
Genetics 100: 547–563.
5. Bays NW, Wilhovsky SK, Goradia A, Hodgkiss-Harlow K, Hampton RY (2001)
HRD4/NPL4 is required for the proteasomal processing of ubiquitinated ER
proteins. Mol Biol Cell 12: 4114–4128.
6. Meyer HH, Wang Y, Warren G (2002) Direct binding of ubiquitin conjugates by
the mammalian p97 adaptor complexes, p47 and Ufd1-Npl4. EMBO J 21:
5645–5652.
7. Park S, Isaacson R, Kim HT, Silver PA, Wagner G (2005) Ufd1 exhibits the
AAA-ATPase fold with two distinct ubiquitin interaction sites. Structure 13:
995–1005.
8. Ye Y, Meyer HH, Rapoport TA (2001) The AAA ATPase Cdc48/p97 and its
partners transport proteins from the ER into the cytosol. Nature 414: 652–656.
9. Yuan X, Shaw A, Zhang X, Kondo H, Lally J, et al. (2001) Solution structure
and interaction surface of the C-terminal domain from p47: a major p97-
cofactor involved in SNARE disassembly. J Mol Biol 311: 255–263.
10. Zhang S, Guha S, Volkert FC (1995) The Saccharomyces SHP1 gene, which
encodes a regulator of phosphoprotein phosphatase 1 with differential effects on
glycogen metabolism, meiotic differentiation, and mitotic cell cycle progression.
Mol Cell Biol 15: 2037–2050.
11. Hartmann-Petersen R, Wallace M, Hofmann K, Koch G, Johnsen AH, et al.
(2004) The Ubx2 and Ubx3 cofactors direct Cdc48 activity to proteolytic and
nonproteolytic ubiquitin-dependent processes. Curr Biol 14: 824–828.
12. Cheng YL, Chen RH (2010) The AAA-ATPase Cdc48 and cofactor Shp1
promote chromosome bi-orientation by balancing Aurora B activity. J Cell Sci
123: 2025–2034.
13. Rabouille C, Kondo H, Newman R, Hui N, Freemont P, et al. (1998) Syntaxin 5
is a common component of the NSF- and p97-mediated reassembly pathways of
Golgi cisternae from mitotic Golgi fragments in vitro. Cell 92: 603–610.
14. Fu X, Ng C, Feng D, Liang C (2003) Cdc48p is required for the cell cycle
commitment point at Start via degradation of the G1-CDK inhibitor Far1p.
J Cell Biol 163: 21–26.
15. Ikai N, Yanagida M (2006) Cdc48 is required for the stability of Cut1/separase
in mitotic anaphase. J Struct Biol 156: 50–61.
16. Cao K, Nakajima R, Meyer HH, Zheng Y (2003) The AAA-ATPase Cdc48/
p97 regulates spindle disassembly at the end of mitosis. Cell 115: 355–367.
17. Heubes S, Stemmann O (2007) The AAA-ATPase p97-Ufd1-Npl4 is required
for ERAD but not for spindle disassembly in Xenopus egg extracts. J Cell Sci
120: 1325–1329.
18. Hetzer M, Meyer HH, Walther TC, Bilbao-Cortes D, Warren G, et al. (2001)
Distinct AAA-ATPase p97 complexes function in discrete steps of nuclear
assembly. Nat Cell Biol 3: 1086–1091.
19. Madeo F, Schlauer J, Zischka H, Mecke D, Frohlich KU (1998) Tyrosine
phosphorylation regulates cell cycle-dependent nuclear localization of Cdc48p.
Mol Biol Cell 9: 131–141.
20. Hadwiger JA, Wittenberg C, Richardson HE, de Barros Lopes M, Reed SI
(1989) A family of cyclin homologs that control the G1 phase in yeast. Proc Natl
Acad Sci U S A 86: 6255–6259.
21. Richardson HE, Wittenberg C, Cross F, Reed SI (1989) An essential G1
function for cyclin-like proteins in yeast. Cell 59: 1127–1133.
22. Tyers M, Tokiwa G, Futcher B (1993) Comparison of the Saccharomyces
cerevisiae G1 cyclins: Cln3 may be an upstream activator of Cln1, Cln2 and
other cyclins. EMBO J 12: 1955–1968.
23. Breeden L (1996) Start-specific transcription in yeast. Curr Top Microbiol
Immunol 208: 95–127.
24. Costanzo M, Nishikawa JL, Tang X, Millman JS, Schub O, et al. (2004) CDK
activity antagonizes Whi5, an inhibitor of G1/S transcription in yeast. Cell 117:
899–913.
25. de Bruin RA, McDonald WH, Kalashnikova TI, Yates J, 3rd, Wittenberg C
(2004) Cln3 activates G1-specific transcription via phosphorylation of the SBF
bound repressor Whi5. Cell 117: 887–898.
26. Wittenberg C, Sugimoto K, Reed SI (1990) G1-specific cyclins of S. cerevisiae:
cell cycle periodicity, regulation by mating pheromone, and association with the
p34CDC28 protein kinase. Cell 62: 225–237.
27. Cross FR, Tinkelenberg AH (1991) A potential positive feedback loop
controlling CLN1 and CLN2 gene expression at the start of the yeast cell
cycle. Cell 65: 875–883.
28. Dirick L, Nasmyth K (1991) Positive feedback in the activation of G1 cyclins in
yeast. Nature 351: 754–757.
29. Cross FR (1995) Starting the cell cycle: what’s the point? Curr Opin Cell Biol 7:
790–797.
30. Johnston GC, Singer RA (1980) Ribosomal precursor RNA metabolism and cell
division in the yeast Saccharomyces cerevisiae. Mol Gen Genet 178: 357–360.
31. Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:
631–677.
32. Ruis H, Schuller C (1995) Stress signaling in yeast. Bioessays 17: 959–965.
33. Kamada Y, Jung US, Piotrowski J, Levin DE (1995) The protein kinase Cactivated
MAP kinase pathway of Saccharomyces cerevisiae mediates a novel
aspect of the heat shock response. Genes Dev 9: 1559–1571.
34. Lee KS, Irie K, Gotoh Y, Watanabe Y, Araki H, et al. (1993) A yeast mitogenactivated
protein kinase homolog (Mpk1p) mediates signalling by protein kinase
C. Mol Cell Biol 13: 3067–3075.
35. Verna J, Lodder A, Lee K, Vagts A, Ballester R (1997) A family of genes
required for maintenance of cell wall integrity and for the stress response in
Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 94: 13804–13809.
36. Ketela T, Green R, Bussey H (1999) Saccharomyces cerevisiae mid2p is a
potential cell wall stress sensor and upstream activator of the PKC1-MPK1 cell
integrity pathway. J Bacteriol 181: 3330–3340.
37. Jung US, Sobering AK, Romeo MJ, Levin DE (2002) Regulation of the yeast
Rlm1 transcription factor by the Mpk1 cell wall integrity MAP kinase. Mol
Microbiol 46: 781–789.
38. Madden K, Sheu YJ, Baetz K, Andrews B, Snyder M (1997) SBF cell cycle
regulator as a target of the yeast PKC-MAP kinase pathway. Science 275:
1781–1784.
39. Elion EA, Brill JA, Fink GR (1991) FUS3 represses CLN1 and CLN2 and in
concert with KSS1 promotes signal transduction. Proc Natl Acad Sci U S A 88:
9392–9396.
40. Bagola K, Mehnert M, Jarosch E, Sommer T (2011) Protein dislocation from the
ER. Biochim Biophys Acta 1808: 925–936.
41. Ghislain M, Dohmen RJ, Levy F, Varshavsky A (1996) Cdc48p interacts with
Ufd3p, a WD repeat protein required for ubiquitin-mediated proteolysis in
Saccharomyces cerevisiae. EMBO J 15: 4884–4899.
42. Huyer G, Piluek WF, Fansler Z, Kreft SG, Hochstrasser M, et al. (2004) Distinct
machinery is required in Saccharomyces cerevisiae for the endoplasmic
reticulum-associated degradation of a multispanning membrane protein and a
soluble luminal protein. J Biol Chem 279: 38369–38378.
43. Nasmyth K, Dirick L (1991) The role of SWI4 and SWI6 in the activity of G1
cyclins in yeast. Cell 66: 995–1013.
44. Mai B, Breeden L (1997) Xbp1, a stress-induced transcriptional repressor of the
Saccharomyces cerevisiae Swi4/Mbp1 family. Mol Cell Biol 17: 6491–6501.
45. Chang F, Herskowitz I (1990) Identification of a gene necessary for cell cycle
arrest by a negative growth factor of yeast: FAR1 is an inhibitor of a G1 cyclin,
CLN2. Cell 63: 999–1011.
46. Rowley A, Johnston GC, Butler B, Werner-Washburne M, Singer RA (1993)
Heat shock-mediated cell cycle blockage and G1 cyclin expression in the yeast
Saccharomyces cerevisiae. Mol Cell Biol 13: 1034–1041.
47. Hoseki J, Ushioda R, Nagata K (2010) Mechanism and components of
endoplasmic reticulum-associated degradation. J Biochem 147: 19–25.
48. Trotter EW, Berenfeld L, Krause SA, Petsko GA, Gray JV (2001) Protein
misfolding and temperature up-shift cause G1 arrest via a common mechanism
dependent on heat shock factor in Saccharomycescerevisiae. Proc Natl Acad
Sci U S A 98: 7313–7318.
49. Jung US, Levin DE (1999) Genome-wide analysis of gene expression regulated
by the yeast cell wall integrity signalling pathway. Mol Microbiol 34: 1049–1057.
50. Molina M, Gil C, Pla J, Arroyo J, Nombela C (2000) Protein localisation
approaches for understanding yeast cell wall biogenesis. Microsc Res Tech 51:
601–612.
51. Medicherla B, Goldberg AL (2008) Heat shock and oxygen radicals stimulate
ubiquitin-dependent degradation mainly of newly synthesized proteins. J Cell
Biol 182: 663–673.
52. Rubin DM, Glickman MH, Larsen CN, Dhruvakumar S, Finley D (1998) Active
site mutants in the six regulatory particle ATPases reveal multiple roles for ATP
in the proteasome. EMBO J 17: 4909–4919.
53. Longtine MS, McKenzie A, 3rd, Demarini DJ, Shah NG, Wach A, et al. (1998)
Additional modules for versatile and economical PCR-based gene deletion and
modification in Saccharomyces cerevisiae. Yeast 14: 953–961.
54. Chen RH, Brady DM, Smith D, Murray AW, Hardwick KG (1999) The spindle
checkpoint of budding yeast depends on a tight complex between the Mad1 and
Mad2 proteins. Mol Biol Cell 10: 2607–2618.
55. Roberg KJ, Rowley N, Kaiser CA (1997) Physiological regulation of membrane
protein sorting late in the secretory pathway of Saccharomyces cerevisiae. J Cell
Biol 137: 1469–1482.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top