跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/16 01:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭筱珺
研究生(外文):Cheng, Hsiao-Chun
論文名稱:薑黃素對於HaCaT細胞表現之乾癬相關因子的影響
論文名稱(外文):The effect of curcumin on the expression of psoriasis-related factors in HaCaT cells
指導教授:王偉銘黃世明黃世明引用關係
指導教授(外文):Wang, Wei-MingHuang, Shih-Ming
口試委員:戴建國詹益欣黃紀榕
口試委員(外文):Tai, Chien-KuoJames, Yi-Hsin ChanHuang, Chi-Jung
口試日期:20110601
學位類別:碩士
校院名稱:國防醫學院
系所名稱:生物化學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:72
中文關鍵詞:乾癬薑黃素
外文關鍵詞:psoriasiscurcumin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:2979
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
乾癬為一種慢性發炎的非傳染性皮膚病,其病理特徵為角質細胞的細胞週期失控而過度增生並合併發炎所致;在臨床病人身上之皮膚病灶則呈現出一個個大小不一、界限分明的紅色斑塊,且因角質層角化不全而有銀白色鱗屑產生。乾癬致病的原因目前仍不清楚,一般認為遺傳與環境這兩個因子皆可能參與其中且互相影響。近年研究指出,免疫系統中的輔助型T細胞第十七型 (Th17) 調控之發炎反應與乾癬的臨床表徵有高度相關性。薑黃素為薑黃萃取成份中較具有活性的化合物,在過去研究顯示薑黃素可廣泛的使用在多種不同的發炎情況或其他疾病中,臨床試驗研究也證明了薑黃素具有抗發炎及抗癌等功效。文獻也提到薑黃素可發展為抗乾癬藥物的潛力,在乾癬模式的動物實驗中被證明其具有減少角質細胞過度增生的能力。薑黃素可使前驅發炎激素表現量減少,例如:IL-6和IL-8的表現減少,因此薑黃素可以減緩乾癬相關的發炎反應以及角質細胞的過度增生。除上述之前驅發炎激素,psoriasin早被發現在乾癬皮膚病灶中會被大量表現,本實驗室亦發現薑黃素可以抑制IL-17刺激人類角質細胞所引發psoriasin之表現,因此,本論文主要想探討在人類角質細胞中,薑黃素對psoriasin表現之影響及其機制;因為薑黃素也是AP-1轉譯因子的抑制劑,因此進一步探討AP-1對psoriasin表現的影響及調控機制。藉由西方墨點法發現psoriasin蛋白表現確實會被薑黃素所抑制,另外,AP-1轉錄因子c-Fos也會被抑制;在Luciferase reporter assay中,薑黃素會降低由AP-1及Zac1所誘導的psoriasin啟動子及細胞週期因子cyclin D1啟動子的轉錄活性。此外,在角質細胞中處理了臨床用藥atRA,也觀察到psoriasin表現量的降低。因此薑黃素確實可以有效的抑制psoriasin的表現,同時也抑制了控制細胞週期cyclin D1的表現,以降低細胞增生速度,另外薑黃素也可透過抑制由AP-1及Zac1所誘導的相關活性,但究竟薑黃素是藉由何種路徑去影響psoriasin及cyclin D1蛋白質的表現,有待進一步的確認。
Psoriasis is a chronic inflammatory non-contagious skin disease characterized by sharply demarcated erythematous plaques covered by silvery-white scales owing to dysregulated cell cycle of keratinocytes as well as associated chronic inflammation. The pathogenesis of psoriasis remained unclear, however, it may be associated with genetic and environmental factors. Recent studies indicated Type 17 helper T cells(Th17)which secrete IL-17 should play a significant role in the pathogenesis of psoriasis. Curcumin, the most active component of turmeric, is derived from the rhizome Curcuma longa L. Previous reports showed that curcumin is widely used in various inflammatory diseases. It is well-known that curcumin has both anti-inflammatory and anti-carcinogenic activities. Curcumin also exhibits the potential to be developed as an antipsoriatic drug because of its ability to curtail keratinocyte proliferation and it was found to be effective in the animal model of psoriasis using mouse tail. Curcumin can decrease the expression of a varieties of pro-inflammatory cytokines such as IL-6 and IL-8 which in turn slows down the psoriasis-related inflammation and hyper-proliferation of keratinocyte. In addition to the above pro-inflammatory cytokines, psoriasin is also highly expressed in psoriatic lesions. Our lab previously found that curcumin can abolish the enhanced psoriasin expression induced by IL-17 upon human keratinocytes. Thus, this study aimed at examining the influence of curcumin on the expression of psoriasin in human keratinocytes and the underlying mechanism. We also would like to analyze the role of AP-1 on the expression of psoriasin since curcumin is a well-known AP-1 inhibitor. Using western blotting, we observed that psoriasin (S100A7) expression is indeed repressed by curcumin. Interesting, c-Fos expression is inhibited by curcumin as well. Using luciferase reporter assay, curcumin represses both psoriasin and cyclin D1 promoter activities induced by AP-1 and Zac1. Furthermore, we also demonstrated the psoriasin expression will also be reduced by anti-psoriatic drugs such as all-trans retinoic acid. Since curcumin repressed psoriasin and cyclin D1 expression at the same time, it may able to reduce the proliferation rate of keratinocytes. In addition, curcumin obviously represses the psoriasis-related activity induced by AP-1 and Zac1. More experiments await for further dissecting to explore the pathway or mechanism employed by curcumin to influence the expression of psoriasis-related factors including psoriasin and cyclin D1.
目錄......................................................I
圖目錄...................................................III
縮寫表...................................................V
中文摘要.................................................VI
英文摘要...............................................VIII
第一章 緒論...............................................1
第二章 實驗材料與方法....................................11
第一節 實驗材料與儀器..................................11
第二節 實驗方法........................................17
第三章 結果..............................................36
第一節 觀察HaCaT細胞培養於不同鈣離子濃度下之型態,確認HaCaT細胞的模型................................36
第二節 探討薑黃素對HaCaT細胞造成的影響................36
第三節 探討AP-1轉錄因子對Psoriasin啟動子轉錄活性的影響及過度表現Zac1對Psoriasin啟動子轉錄活性的影響.....37
第四節 探討薑黃素對Psoriasin啟動子轉錄活性的影響.......38
第五節 探討Psoriasin啟動子的AP-1轉錄因子結合位對轉錄因子的影響. .........................................39
第六節 探討薑黃素對細胞週期相關因子的影響. ............ 41
第七節 探討All-Trans Retinoic acid(atRA)對AP-1相關因子與psoriasin(S100A7)的影響...........................41

第四章 討論..............................................43
第一節 選用HaCaT細胞做為實驗模型的原因................43
第二節 薑黃素對乾癬相關因子的影響......................43
第三節 AP-1在乾癬中扮演的角色.........................44
第四節 Zac1在乾癬中扮演的角色.........................45
第五節 薑黃素對細胞週期相關因子的影響................. 45
第六節 臨床相關藥物的影響............................. 46
參考文獻.................................................67

1.Deyrieux, A.F. and V.G. Wilson, In vitro culture conditions to study keratinocyte differentiation using the HaCaT cell line. Cytotechnology, 2007. 54(2): p. 77-83.
2.McKay, I.A. and I.M. Leigh, Altered keratinocyte growth and differentiation in psoriasis. Clin Dermatol, 1995. 13(2): p. 105-14.
3.Ilkovitch, D., Role of immune-regulatory cells in skin pathology. J Leukoc Biol, 2011. 89(1): p. 41-9.
4.Nestle, F.O., et al., Skin immune sentinels in health and disease. Nat Rev Immunol, 2009. 9(10): p. 679-91.
5.Nickoloff, B.J., Keratinocytes regain momentum as instigators of cutaneous inflammation. Trends Mol Med, 2006. 12(3): p. 102-6.
6.Eckert, R.L., et al., S100 proteins in the epidermis. J Invest Dermatol, 2004. 123(1): p. 23-33.
7.Jinquan, T., et al., Psoriasin: a novel chemotactic protein. J Invest Dermatol, 1996. 107(1): p. 5-10.
8.Zibert, J.R., et al., Significance of the S100A4 protein in psoriasis. J Invest Dermatol, 2010. 130(1): p. 150-60.
9.Broome, A.M., D. Ryan, and R.L. Eckert, S100 protein subcellular localization during epidermal differentiation and psoriasis. J Histochem Cytochem, 2003. 51(5): p. 675-85.
10.Watson, P.H., E.R. Leygue, and L.C. Murphy, Psoriasin (S100A7). Int J Biochem Cell Biol, 1998. 30(5): p. 567-71.
11.Emberley, E.D., L.C. Murphy, and P.H. Watson, S100A7 and the progression of breast cancer. Breast Cancer Res, 2004. 6(4): p. 153-9.
12.Johansen, C., et al., Characterization of the interleukin-17 isoforms and receptors in lesional psoriatic skin. Br J Dermatol, 2009. 160(2): p. 319-24.
13.Caproni, M., et al., Serum levels of IL-17 and IL-22 are reduced by etanercept, but not by acitretin, in patients with psoriasis: a randomized-controlled trial. J Clin Immunol, 2009. 29(2): p. 210-4.
14.Gambichler, T., et al., Expression of antimicrobial peptides and proteins in etanercept-treated psoriasis patients. Regul Pept, 2011. 167(2-3): p. 163-6.
15.Boniface, K., et al., From interleukin-23 to T-helper 17 cells: human T-helper cell differentiation revisited. Immunol Rev, 2008. 226: p. 132-46.
16.Kimura, A. and T. Kishimoto, IL-6: regulator of Treg/Th17 balance. Eur J Immunol, 2010. 40(7): p. 1830-5.
17.Di Cesare, A., P. Di Meglio, and F.O. Nestle, The IL-23/Th17 axis in the immunopathogenesis of psoriasis. J Invest Dermatol, 2009. 129(6): p. 1339-50.
18.Bettelli, E., M. Oukka, and V.K. Kuchroo, T(H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol, 2007. 8(4): p. 345-50.
19.Tonel, G. and C. Conrad, Interplay between keratinocytes and immune cells--recent insights into psoriasis pathogenesis. Int J Biochem Cell Biol, 2009. 41(5): p. 963-8.
20.Pari, L., D. Tewas, and J. Eckel, Role of curcumin in health and disease. Arch Physiol Biochem, 2008. 114(2): p. 127-49.
21.Aggarwal, B.B. and K.B. Harikumar, Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol, 2009. 41(1): p. 40-59.
22.Thangapazham, R.L., A. Sharma, and R.K. Maheshwari, Beneficial role of curcumin in skin diseases. Adv Exp Med Biol, 2007. 595: p. 343-57.
23.Heng, M.C., et al., Drug-induced suppression of phosphorylase kinase activity correlates with resolution of psoriasis as assessed by clinical, histological and immunohistochemical parameters. Br J Dermatol, 2000. 143(5): p. 937-49.
24.Heng, M.C., M.K. Song, and M.K. Heng, Elevated phosphorylase kinase activity in psoriatic epidermis: correlation with increased phosphorylation and psoriatic activity. Br J Dermatol, 1994. 130(3): p. 298-306.
25.Hsu, C.H. and A.L. Cheng, Clinical studies with curcumin. Adv Exp Med Biol, 2007. 595: p. 471-80.
26.Abdollahi, A., et al., Identification of a zinc-finger gene at 6q25: a chromosomal region implicated in development of many solid tumors. Oncogene, 1997. 14(16): p. 1973-9.
27.Varrault, A., et al., hZAC encodes a zinc finger protein with antiproliferative properties and maps to a chromosomal region frequently lost in cancer. Proc Natl Acad Sci U S A, 1998. 95(15): p. 8835-40.
28.Basyuk, E., et al., The candidate tumor suppressor gene ZAC is involved in keratinocyte differentiation and its expression is lost in basal cell carcinomas. Mol Cancer Res, 2005. 3(9): p. 483-92.
29.Koy, S., et al., Loss of expression of ZAC/LOT1 in squamous cell carcinomas of head and neck. Head Neck, 2004. 26(4): p. 338-44.
30.Eferl, R. and E.F. Wagner, AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer, 2003. 3(11): p. 859-68.
31.Karin, M., Z. Liu, and E. Zandi, AP-1 function and regulation. Curr Opin Cell Biol, 1997. 9(2): p. 240-6.
32.Angel, P., A. Szabowski, and M. Schorpp-Kistner, Function and regulation of AP-1 subunits in skin physiology and pathology. Oncogene, 2001. 20(19): p. 2413-23.
33.Eckert, R.L. and J.F. Welter, Transcription factor regulation of epidermal keratinocyte gene expression. Mol Biol Rep, 1996. 23(1): p. 59-70.
34.Zenz, R., et al., Psoriasis-like skin disease and arthritis caused by inducible epidermal deletion of Jun proteins. Nature, 2005. 437(7057): p. 369-75.
35.Vermeulen, K., D.R. Van Bockstaele, and Z.N. Berneman, The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif, 2003. 36(3): p. 131-49.
36.Abou, E.L.E.M., et al., Expression of cyclin D1 and p16 in psoriasis before and after phototherapy. Clin Exp Dermatol, 2010. 35(7): p. 781-5.
37.Micallef, L., et al., Effects of extracellular calcium on the growth-differentiation switch in immortalized keratinocyte HaCaT cells compared with normal human keratinocytes. Exp Dermatol, 2009. 18(2): p. 143-51.
38.Hsiao, Y.P., et al., Antiproliferative effects of lactic acid via the induction of apoptosis and cell cycle arrest in a human keratinocyte cell line (HaCaT). J Dermatol Sci, 2009. 54(3): p. 175-84.
39.Semprini, S., et al., Genomic structure, promoter characterisation and mutational analysis of the S100A7 gene: exclusion of a candidate for familial psoriasis susceptibility. Hum Genet, 1999. 104(2): p. 130-4.
40.Zhao, W., L.T. Chow, and T.R. Broker, Transcription activities of human papillomavirus type 11 E6 promoter-proximal elements in raft and submerged cultures of foreskin keratinocytes. J Virol, 1997. 71(11): p. 8832-40.
41.Wang, W.M., A.Y. Lee, and C.M. Chiang, One-step affinity tag purification of full-length recombinant human AP-1 complexes from bacterial inclusion bodies using a polycistronic expression system. Protein Expr Purif, 2008. 59(1): p. 144-52.
42.Bos, J.D. and P.I. Spuls, Topical treatments in psoriasis: today and tomorrow. Clin Dermatol, 2008. 26(5): p. 432-7.
43.Boukamp, P., et al., Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol, 1988. 106(3): p. 761-71.
44.Prusty, B.K. and B.C. Das, Constitutive activation of transcription factor AP-1 in cervical cancer and suppression of human papillomavirus (HPV) transcription and AP-1 activity in HeLa cells by curcumin. Int J Cancer, 2005. 113(6): p. 951-60.
45.Chen, M., et al., The methylation pattern of p16INK4a gene promoter in psoriatic epidermis and its clinical significance. Br J Dermatol, 2008. 158(5): p. 987-93.
46. Yang Ya-Lan., IL-17 Regulated Expression of Psoriasis-related
Factors from Human Keratinocytes. NDLTD, 2010

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top