跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/03/18 18:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:高維灼
研究生(外文):Kao,Wei Chuo
論文名稱:探討野生型與突變型δ-晶體蛋白在尿素影響下可逆性結構變化過程
論文名稱(外文):Study of the reversible unfolding of wild-type and mutant δ-crystallin under urea conditions
指導教授:李 惠 珍
指導教授(外文):Lee,Hwei Jen
口試委員:周慰遠周記源
口試委員(外文):Chou,Wei YuanChou,Chi Yuan
口試日期:100/07/13
學位類別:碩士
校院名稱:國防醫學院
系所名稱:生物化學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:67
中文關鍵詞:δ-晶體蛋白
外文關鍵詞:δ-crystallin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:218
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
δ-晶體蛋白為鳥類和爬蟲類的水晶體特有之結構蛋白,與精胺醯丁二酸裂解酶(argininosuccinate lyase, ASL)有高度序列相似性,具演化關係。先前研究將δ-晶體蛋白位於單元介面間上的K315突變成Ala時,在尿素影響下,以色胺酸螢光追蹤蛋白質結構變化,發現存在穩定單體的中間狀態,而野生型則無此現象。本研究進一步想了解此中間狀態結構,可逆性變性及單元組合過程。野生型與突變型為3階段變性過程,所需消耗能量分別為9.9 ± 0.4 (kcal/mol)及8.6 ± 0.3 (kcal/mol),推論K315在維持單元介面上之安定能量約為1.3 (kcal/mol)。K315A在尿素環境下形成之中間狀態其二級結構與原來結構沒有顯著差異,而此狀態較原來結構有較高之拒水性區暴露但不形成聚合物結構,可能為單元解離後形成穩定單元體。當稀釋尿素之濃度後,K315A可由此中間狀態結構再折疊成四聚體。但尿素變性後之δ-晶體蛋白結構卻無法可逆性恢復。K315A穩定中間狀態,在胍胺酸作用,可以可逆性以3 – state方式變性及復性,其能量為3.1(kcal/mol)。此結果,符合先前推測δ-晶體蛋白可逆性變性過程T<-->D<-->M<-->I1<-->U。而K315在單元介面之作用力推測為造成蛋白質單元解離過程之能量障礙,因此野生型δ-晶體蛋白之單元解離與部分結構瓦解同時進行,而形成部分變性之單元體結構。
δ-crystallin is a taxon-specific crystallin that expressed in the eye lenses of birds and reptiles .In evolution, birds, δ-crystallin was recruited from the housekeeping enzyme argininosuccinate lyase (ASL) and serve as a structure protein. Conformation change of δ-crystallin was studied previously by using tryptophan fluorescence as probe. A stable intermediate was found during unfolding of K315A mutant but not for wild-type δ-crystallin. K315 forms impatail H-bonding between subunit interfaces. To elucidate the structure role of k315, the reversible unfolding and association of the stable intermediate was studied. Unfolding of wild-type and mutant δ-crystallin by urea follows 3 – state process. The total energy for unfolding were 9.9 ± 0.4 and 8.6 ± 0.3 (kcal/mol), respectively. Therefore, the energy for K315 to maintain the stability of interface was about 1.3 (kcal/mol). No apparent secondary structure changes was observed between the stable intermediate and native form. However, there was a higher exposure of the hydrophobic area. But no aggregation was found. Thus the stable intermediate suggested to be a stable monomer. When the urea was removed, monomer K315A was able to reassociated into a tetramer. However, the association of partial unfolded wild-type intermediate form was irreversible unfolding monomeric under GdnHCl was reversible following a 3 - state unfolding models with the unfolding energy about 3.1 kcal/mol. The result was consistent with our previous assumption that the reversible unfolding of δ-crystallin follows the process of T<-->D<-->M<-->I<-->U. The interaction provided by K315 in subunit interface is the energy barrier for subunit dissociated. Consequently, the simultaneously occurrence of dissociate and unfolding for wild-type δ-crystallin in urea led to the formation of partial unfolded intermediate.
總目錄
目錄-----------------------------------------------II
表目錄----------------------------------------------IV
圖目錄----------------------------------------------V
附錄目錄--------------------------------------------VII
名詞縮寫對照表---------------------------------------VIII
摘要-----------------------------------------------IX
Abstract------------------------------------------X

目錄
緒論-------------------------------------------------01
實驗材料----------------------------------------------05
壹、 藥品試劑--------------------------------------05
貳、 儀器及器材------------------------------------06
參、 試劑配製--------------------------------------07
實驗方法----------------------------------------------11
壹、 勝任細胞 (DH5α、BL21)製作----------------------11
貳、 轉殖作用 (Transformation)---------------------11
參、 野生型與突變型蛋白質之菌體培養--------------------12
肆、 野生型與突變型之蛋白質純化-----------------------13
伍、 測定蛋白質濃度---------------------------------16
陸、 圓偏振二色旋光光譜儀之蛋白質二級結構分析------------17
柒、 尿素或GdnHCl效應下之變性及復性實驗----------------17
捌、 蛋白質色胺酸螢光之實驗---------------------------18
玖、 ANS螢光實驗分析--------------------------------18
壹拾、 分析級超高速離心實驗-----------------------------19
壹拾壹、 分子過篩層析實驗--------------------------------20

實驗結果----------------------------------------------22
壹、 野生型δ-和突變型δ-晶體蛋白之純化------------------22
貳、 尿素效應下的變性實驗----------------------------23
參、 尿素效應下蛋白質單元解離之熱力學常數分析------------23
肆、 ANS結合分析-----------------------------------24
伍、 圓偏振二色旋光光譜分析---------------------------24
陸、 分析型超高速離心分析-----------------------------25
柒、 尿素變性後之復性--------------------------------26
捌、 GdnHCl效應下之變性實驗--------------------------26
討 論----------------------------------------------28
參考文獻-----------------------------------------------53

表 目 錄
表一、野生型及K315A突變型δ-晶體蛋白在尿素變性實驗之熱力學
參數分析-----------------------------------------45
表二、不同尿素濃度下野生型及突變型δ-晶體蛋白二級結構分析-
-----------------------------------------------46
表三、將不同尿素之濃度稀釋到0.15M野生型及突變型δ-晶體蛋白
二級結構分析-------------------------------------46
表四、K315A突變型δ-晶體蛋白單元體在GdnHCl變性實驗之熱力學
參數分析-----------------------------------------47

圖 目 錄
圖一、野生型鵝眼δ-晶體蛋白立體結構-------------------------32
圖二、野生型鵝眼δ-晶體蛋白純化圖---------------------------33
圖三、K315A突變型鵝眼δ-晶體蛋白純化圖----------------------34
圖四、野生型及突變型δ-晶體蛋白尿素變性實驗-------------------35
圖五、野生型及突變型鵝眼δ-晶體蛋白ANS結合分析----------------36
圖六、野生型δ-晶體蛋白在不同尿素濃度下蛋白質圓偏振二色旋光
譜----------------------------------------------37
圖七、K315A突變型δ-晶體蛋白在不同尿素濃度下蛋白質圓偏振二
色旋光譜-----------------------------------------38
圖八、野生型及突變型δ-晶體蛋白在不同尿素濃度下二級結構之變
化---------------------------------------------39
圖九、超高速離心分析野生型及K315A突變型δ-晶體蛋白在不同尿
素濃度下蛋白分子分布情形---------------------------40
圖十、野生型及K315A突變型δ-晶體蛋白在不同尿素變性後之復性
實驗分析----------------------------------------41
圖十一、野生型與K315A突變型δ-晶體蛋白變性後復性實驗分析-
------------------------------------------------------42
圖十二、K315A突變型δ-晶體蛋白單元變性分析-------------------43
圖十三、K315A突變型δ-晶體蛋白單元變性後復性分析--------------44

附錄目錄
附錄一、模擬鵝眼δ-晶體蛋白的活性中心------------------------48
附錄二、模擬鵝眼δ-晶體蛋白胺基酸K315在兩雙聚體介面間氫鍵形
成-------------------------------------------49
附錄三、突變型鴨眼δ-晶體蛋白S283A與野生型鴨眼δ-晶體蛋白活
性中心內參與受質催化的胺基酸經結構重疊之結果-
----------------------------------------------50
附錄四、野生型鵝眼δ-晶體蛋白單元與單元間作用力----------------51
附錄五、突變型鵝眼δ-晶體蛋白K315A 單元與單元間作用力
---------------------------------------------52

參考文獻
1.Meehan, S., Berry, Y., Luisi, B., Dobson, C. M., Carver, J. A., and MacPhee, C. E. (2004) Amyloid fibril
formation by lens crystallin proteins and its implications for cataract formation, J Biol Chem 279,
3413-3419.
2.Sampaleanu, L. M., Vallee, F., Slingsby, C., and Howell, P. L. (2001) Structural studies of duck delta 1
and delta 2 crystallin suggest conformational changes occur during catalysis, Biochemistry 40, 2732-
2742.
3.Piatigorsky, J., O'Brien, W. E., Norman, B. L., Kalumuck, K., Wistow, G. J., Borras, T., Nickerson, J.
M., and Wawrousek, E. F. (1988) Gene sharing by delta-crystallin and argininosuccinate lyase, Proc Natl
Acad Sci U S A 85, 3479-3483.
4.Wang, K., and Spector, A. (1995) Alpha-crystallin can act as a chaperone under conditions of oxidative
stress, Invest Ophthalmol Vis Sci 36, 311-321.
5.Borkman, R. F., Knight, G., and Obi, B. (1996) The molecular chaperone alpha-crystallin inhibits UV-
induced protein aggregation, Exp Eye Res 62, 141-148.
6.Ganea, E., and Harding, J. J. (1995) Molecular chaperones protect against glycation-induced inactivation
of glucose-6-phosphate dehydrogenase, Eur J Biochem 231, 181-185.
7.Sampaleanu, L. M., Davidson, A. R., Graham, C., Wistow, G. J., and Howell, P. L. (1999) Domain exchange
experiments in duck delta-crystallins: functional and evolutionary implications, Protein Sci 8, 529-537.
8.Piatigorsky, J., and Wistow, G. (1991) The recruitment of crystallins: new functions precede gene
duplication, Science 252, 1078-1079.
9.Garrard, L. J., Bui, Q. T., Nygaard, R., and Raushel, F. M. (1985) Acid-base catalysis in the
argininosuccinate lyase reaction, J Biol Chem 260, 5548-5553.
10.Simpson, A., Bateman, O., Driessen, H., Lindley, P., Moss, D., Mylvaganam, S., Narebor, E., and
Slingsby, C. (1994) The structure of avian eye lens delta-crystallin reveals a new fold for a
superfamily of oligomeric enzymes, Nat Struct Biol 1, 724-734.
11.Abu-Abed, M., Turner, M. A., Vallee, F., Simpson, A., Slingsby, C., and Howell, P. L. (1997) Structural
comparison of the enzymatically active and inactive forms of delta crystallin and the role of histidine
91, Biochemistry 36, 14012-14022.
12.Yu, B., Thompson, G. D., Yip, P., Howell, P. L., and Davidson, A. R. (2001) Mechanisms for intragenic
complementation at the human argininosuccinate lyase locus, Biochemistry 40, 15581-15590.
13.Lee, H. J., Lai, Y. H., Wu, S. Y., and Chen, Y. H. (2005) The effect of N-terminal truncation on double-
dimer assembly of goose delta-crystallin, Biochem J 392, 545-554.
14.Chang, G. G., Lee, H. J., and Chow, R. H. (1997) pH-induced reversible dissociation of tetrameric duck
lens delta-crystallin, Exp Eye Res 65, 653-659.
15.Lee, H. J., Lu, S. W., and Chang, G. G. (2003) Monomeric molten globule intermediate involved in the
equilibrium unfolding of tetrameric duck delta2-crystallin, Eur J Biochem 270, 3988-3995.
16.Sampaleanu, L. M., Yu, B., and Howell, P. L. (2002) Mutational analysis of duck delta 2 crystallin and
the structure of an inactive mutant with bound substrate provide insight into the enzymatic mechanism of
argininosuccinate lyase, J Biol Chem 277, 4166-4175.
17.Sampaleanu, L. M., Codding, P. W., Lobsanov, Y. D., Tsai, M., Smith, G. D., Horvatin, C., and Howell, P.
L. (2004) Structural studies of duck delta2 crystallin mutants provide insight into the role of Thr161
and the 280s loop in catalysis, Biochem J 384, 437-447.
18.Huang, C. W., Tseng, C. C., Chen, Y. H., Chou, W. Y., and Lee, H. J. (2009) Substitution of residues at
the double dimer interface affects the stability and oligomerization of goose delta-crystallin, FEBS J
276, 5126-5136.
19.de Jongh, H. H., Goormaghtigh, E., and Killian, J. A. (1994) Analysis of circular dichroism spectra of
oriented protein-lipid complexes: toward a general application, Biochemistry 33, 14521-14528.
20.Dignam, J. D., Qu, X., and Chaires, J. B. (2001) Equilibrium unfolding of Bombyx mori glycyl-tRNA
synthetase, J Biol Chem 276, 4028-4037.
21.Sanchez del Pino, M. M., and Fersht, A. R. (1997) Nonsequential unfolding of the alpha/beta barrel
protein indole-3-glycerol-phosphate synthase, Biochemistry 36, 5560-5565.
22.Brown, P. H., and Schuck, P. (2006) Macromolecular size-and-shape distributions by sedimentation
velocity analytical ultracentrifugation, Biophys J 90, 4651-4661.
23.Schuck, P. (2000) Size-distribution analysis of macromolecules by sedimentation velocity
ultracentrifugation and lamm equation modeling, Biophys J 78, 1606-1619.
24.Chen, Y. H., Lee, M. T., Cheng, Y. W., Chou, W. Y., Yu, C. M., and Lee, H. J. (2011) Distinct
interactions of alphaA-crystallin with homologous substrate proteins, delta-crystallin and
argininosuccinate lyase, under thermal stress, Biochimie 93, 314-320.
25.Monera, O. D., Kay, C. M., and Hodges, R. S. (1994) Protein denaturation with guanidine hydrochloride or
urea provides a different estimate of stability depending on the contributions of electrostatic
interactions, Protein Sci 3, 1984-1991.
26.Goenka, S., Raman, B., Ramakrishna, T., and Rao, C. M. (2001) Unfolding and refolding of a quinone
oxidoreductase: alpha-crystallin, a molecular chaperone, assists its reactivation, Biochem J 359, 547-
556.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top