|
1.Schwartz, Y.B. and V. Pirrotta, Polycomb silencing mechanisms and the management of genomic programmes. Nat Rev Genet, 2007. 8(1): p. 9‐22. 2. Sparmann, A. and M. van Lohuizen, Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer, 2006. 6(11): p.846‐56. 3. Margueron, R. and D. Reinberg, The Polycomb complex PRC2 and its mark in life. Nature, 2011. 469(7330): p. 343‐9. 4. Varambally, S., et al., Genomic loss of microRNA‐101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science, 2008. 322(5908): p. 1695‐9. 5. Varambally, S., et al., The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature, 2002. 419(6907): p.624‐9. 6. Zeidler, M., et al., The Polycomb group protein EZH2 impairs DNA repair in breast epithelial cells. Neoplasia, 2005. 7(11): p. 1011‐9. 7. Kleer, C.G., et al., EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci U S A, 2003. 100(20): p. 11606‐11. 8. Min, J., et al., An oncogene‐tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor‐kappaB. Nat Med, 2010. 16(3): p. 286‐94. 9. Wei, Y., et al., CDK1‐dependent phosphorylation of EZH2 suppresses methylation of H3K27 and promotes osteogenic differentiation of human mesenchymal stem cells. Nat Cell Biol, 2011. 13(1): p. 87‐94. 10. Lu, C., et al., Regulation of tumor angiogenesis by EZH2. Cancer Cell, 2010. 18(2): p. 185‐97. 11. Smits, M., et al., miR‐101 is down‐regulated in glioblastoma resulting in EZH2‐induced proliferation, migration, and angiogenesis. Oncotarget, 2010. 1(8): p. 710‐20. 12. Suva, M.L., et al., EZH2 is essential for glioblastoma cancer stem cell maintenance. Cancer Res, 2009. 69(24): p. 9211‐8. 13. Chang, C.J., et al., EZH2 promotes expansion of breast tumor initiating cells through activation of RAF1‐beta‐catenin signaling. Cancer Cell, 2011. 19(1): p. 86‐100. 14. Simon, J.A. and C.A. Lange, Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res, 2008. 647(1‐2): p. 21‐9. 15. Gonzalez, M.E., et al., Histone Methyltransferase EZH2 Induces Akt‐Dependent Genomic Instability and BRCA1 Inhibition in Breast Cancer. Cancer Res, 2011. 71(6): p. 2360‐70. 16. Kleer, C.G., Carcinoma of the breast with medullary‐like features: diagnostic challenges and relationship with BRCA1 and EZH2 functions. Arch Pathol Lab Med, 2009. 133(11): p. 1822‐5. 17. Cha, T.L., et al., Akt‐mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3. Science, 2005. 310(5746): p. 306‐10. 18. Bracken, A.P. and K. Helin, Polycomb group proteins: navigators of lineage pathways led astray in cancer. Nat Rev Cancer, 2009. 9(11): p. 773‐84. 19. Pasini, D., A.P. Bracken, and K. Helin, Polycomb group proteins in cell cycle progression and cancer. Cell Cycle, 2004. 3(4): p. 396‐400. 20. Bracken, A.P., et al., EZH2 is downstream of the pRB‐E2F pathway, essential for proliferation and amplified in cancer. EMBO J, 2003. 22(20): p. 5323‐35. 21. Bracken, A.P., et al., Genome‐wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev, 2006. 20(9): p. 1123‐36. 22. Palacios, D., et al., TNF/p38alpha/polycomb signaling to Pax7 locus in satellite cells links inflammation to the epigenetic control of muscle regeneration. Cell Stem Cell, 2010. 7(4): p. 455‐69. 23. Wu, S.C. and Y. Zhang, CDK1‐mediated phosphorylation of Ezh2 regulates its stability. J Biol Chem, 2011. 24. Kaneko, S., et al., Phosphorylation of the PRC2 component Ezh2 is cell cycle‐regulated and up‐regulates its binding to ncRNA. Genes Dev, 2010. 24(23): p. 2615‐20. 25. Tan, J., et al., Pharmacologic disruption of Polycomb‐repressive complex 2‐mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev, 2007. 21(9): p. 1050‐63. 26. Fiskus, W., et al., Combined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3‐deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells. Blood, 2009. 114(13): p. 2733‐43. 27. Zoabi, M., et al., PRAJA1 is a ubiquitin ligase for the polycomb repressive complex 2 proteins. Biochem Biophys Res Commun, 2011. 408(3): p. 393‐8. 28. Niessen, H.E., J.A. Demmers, and J.W. Voncken, Talking to chromatin: post‐translational modulation of polycomb group function. Epigenetics Chromatin, 2009. 2(1): p. 10. 29. Malik, R., et al., Quantitative analysis of the human spindle phosphoproteome at distinct mitotic stages. J Proteome Res, 2009. 8(10): p. 4553‐63. 30. Malik, R., E.A. Nigg, and R. Korner, Comparative conservation analysis of the human mitotic phosphoproteome. Bioinformatics, 2008. 24(12): p. 1426‐32. 31. Nousiainen, M., et al., Phosphoproteome analysis of the human mitotic spindle. Proc Natl Acad Sci U S A, 2006. 103(14): p. 5391‐6. 32. Chen, R.Q., et al., CDC25B mediates rapamycin‐induced oncogenic 45 responses in cancer cells. Cancer Res, 2009. 69(6): p. 2663‐8. 33. Mayya, V., et al., Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system‐wide modulation of protein‐protein interactions. Sci Signal, 2009. 2(84): p. ra46. 34. Musch, T., et al., Nucleoside drugs induce cellular differentiation by caspase‐dependent degradation of stem cell factors. PLoS One, 2010. 5(5): p. e10726. 35. Yap, D.B., et al., Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. Blood, 2011. 117(8): p. 2451‐9. 36. Morin, R.D., et al., Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B‐cell lymphomas of germinal‐center origin. Nat Genet, 2010. 42(2): p. 181‐5. 37. Chase, A. and N.C. Cross, Aberrations of EZH2 in cancer. Clin Cancer Res, 2011. 38. Hansen, K.H., et al., A model for transmission of the H3K27me3 epigenetic mark. Nat Cell Biol, 2008. 10(11): p. 1291‐1300. 39. Tang, X., et al., Activated p53 suppresses the histone methyltransferase EZH2 gene. Oncogene, 2004. 23(34): p. 5759‐69. 40. Bracken, A.P., et al., The Polycomb group proteins bind throughout the INK4A‐ARF locus and are disassociated in senescent cells. Genes Dev, 2007. 21(5): p. 525‐30. 41. Gonzalez, M.E., et al., Downregulation of EZH2 decreases growth of estrogen receptor‐negative invasive breast carcinoma and requires BRCA1. Oncogene, 2009. 28(6): p. 843‐53. 42. Dulla, K., et al., Quantitative site‐specific phosphorylation dynamics of human protein kinases during mitotic progression. Mol Cell Proteomics, 2010. 9(6): p. 1167‐81. 43. Dephoure, N., et al., A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A, 2008. 105(31): p. 46 10762‐7. 44. Metz, C.W., The Role of the "Chromosome Sheath" in Mitosis, and Its Possible Relation to Phenomena of Mutation. Proc Natl Acad Sci U S A, 1934. 20(3): p. 159‐63. 45. Bodoor, K., et al., Sequential recruitment of NPC proteins to the nuclear periphery at the end of mitosis. J Cell Sci, 1999. 112 ( Pt 13): p. 2253‐64. 46. Shen, Q., et al., NAT10, a nucleolar protein, localizes to the midbody and regulates cytokinesis and acetylation of microtubules. Exp Cell Res, 2009. 315(10): p. 1653‐67. 47. Van Hooser, A.A., P. Yuh, and R. Heald, The perichromosomal layer. Chromosoma, 2005. 114(6): p. 377‐88. 48. Gautier, T., et al., Fate of specific nucleolar perichromosomal proteins during mitosis: cellular distribution and association with U3 snoRNA. Biol Cell, 1994. 82(2‐3): p. 81‐93. 49. Hernandez‐Verdun, D. and T. Gautier, The chromosome periphery during mitosis. Bioessays, 1994. 16(3): p. 179‐85. 50. Traut, W., et al., Chromatin preferences of the perichromosomal layer constituent pKi‐67. Chromosome Res, 2002. 10(8): p. 685‐94. 51. Kreitz, S., et al., The proliferation‐specific human Ki‐67 protein is a constituent of compact chromatin. Exp Cell Res, 2000. 261(1): p. 284‐92. 52. Shevchenko, A., et al., In‐gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protocols, 2007. 1(6): p. 2856‐2860. 53. Aoto, T., et al., Polycomb group protein‐associated chromatin is reproduced in post‐mitotic G1 phase and is required for S phase progression. J Biol Chem, 2008. 283(27): p. 18905‐15. 54. Van Dessel, N., et al., The phosphatase interactor NIPP1 regulates the occupancy of the histone methyltransferase EZH2 at Polycomb targets. Nucleic Acids Res, 2010. 38(21): p. 7500‐12. 47 55. Cao, R. and Y. Zhang, The functions of E(Z)/EZH2‐mediated methylation of lysine 27 in histone H3. Curr Opin Genet Dev, 2004. 14(2): p. 155‐64. 56. Takagi, M., et al., Chmadrin: a novel Ki‐67 antigen‐related perichromosomal protein possibly implicated in higher order chromatin structure. J Cell Sci, 1999. 112 ( Pt 15): p. 2463‐72. 57. He, D.C., T. Martin, and S. Penman, Localization of heterogeneous nuclear ribonucleoprotein in the interphase nuclear matrix core filaments and on perichromosomal filaments at mitosis. Proc Natl Acad Sci U S A, 1991. 88(17): p. 7469‐73. 58. Dilworth, S.M., A perichromosomal region contains proteins phosphorylated during mitosis in Xenopus laevis cells. J Cell Sci, 1991. 98 ( Pt 3): p. 309‐15. 59. Chen, S., et al., Cyclin‐dependent kinases regulate epigenetic gene silencing through phosphorylation of EZH2. Nat Cell Biol, 2010. 12(11): p. 1108‐14. 60. Li, G., et al., Jarid2 and PRC2, partners in regulating gene expression. Genes Dev, 2010. 24(4): p. 368‐80. 61. Pasini, D., et al., JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature, 2010. 464(7286): p. 306‐10.
|