|
第六章參考文獻 (References) 1.Parkin, D.M. and F. Bray, Chapter 2: The burden of HPV-related cancers. Vaccine, 2006. 24 Suppl 3: p. S3/11-25. 2.Schlecht, N.F., et al., Persistent human papillomavirus infection as a predictor of cervical intraepithelial neoplasia. JAMA, 2001. 286(24): p. 3106-14. 3.zur Hausen, H., Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer, 2002. 2(5): p. 342-50. 4.zur Hausen, H., Papillomaviruses in the causation of human cancers - a brief historical account. Virology, 2009. 384(2): p. 260-5. 5.Walboomers, J.M., et al., Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol, 1999. 189(1): p. 12-9. 6.Snijders, P.J.F., et al., HPV-mediated cervical carcinogenesis: concepts and clinical implications. 2006, John Wiley & Sons, Ltd. p. 152-164. 7.Sheahan, S., et al., TGFbeta induces apoptosis and EMT in primary mouse hepatocytes independently of p53, p21Cip1 or Rb status. BMC Cancer, 2008. 8: p. 191. 8.Yugawa, T. and T. Kiyono, Molecular mechanisms of cervical carcinogenesis by high-risk human papillomaviruses: novel functions of E6 and E7 oncoproteins. Rev Med Virol, 2009. 19(2): p. 97-113. 9.Jones, P.A. and S.B. Baylin, The fundamental role of epigenetic events in cancer. Nat Rev Genet, 2002. 3(6): p. 415-28. 10.Herman, J.G. and S.B. Baylin, Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med, 2003. 349(21): p. 2042-54. 11.Feinberg, A.P. and B. Tycko, The history of cancer epigenetics. Nat Rev Cancer, 2004. 4(2): p. 143-53. 12.Tischoff, I. and A. Tannapfe, DNA methylation in hepatocellular carcinoma. World J Gastroenterol, 2008. 14(11): p. 1741-8. 13.Lopez-Serra, L., et al., A profile of methyl-CpG binding domain protein occupancy of hypermethylated promoter CpG islands of tumor suppressor genes in human cancer. Cancer Res, 2006. 66(17): p. 8342-6. 14.Neyaz, M.K., et al., Effect of aberrant promoter methylation of FHIT and RASSF1A genes on susceptibility to cervical cancer in a North Indian population. Biomarkers, 2008. 13(6): p. 597-606. 15.Tamandani, D.M., et al., CpG Island Methylation of TMS1/ASC and CASP8 Genes in Cervical Cancer. Eur J Med Res, 2009. 14(2): p. 71-5. 16.Lee, E.J., et al., Dkk3, downregulated in cervical cancer, functions as a negative regulator of beta-catenin. Int J Cancer, 2009. 124(2): p. 287-97. 17.Mottet, D., et al., HDAC4 represses p21(WAF1/Cip1) expression in human cancer cells through a Sp1-dependent, p53-independent mechanism. Oncogene, 2009. 28(2): p. 243-56. 18.de Ruijter, A.J., et al., Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J, 2003. 370(Pt 3): p. 737-49. 19.Stern, C.D. and R.J. Keynes, Spatial patterns of homeobox gene expression in the developing mammalian CNS. Trends in Neurosciences, 1988. 11(5): p. 190-192. 20.Hobert, O. and H. Westphal, Functions of LIM-homeobox genes. Trends Genet, 2000. 16(2): p. 75-83. 21.German, M.S., et al., Localization of the genes encoding two transcription factors, LMX1 and CDX3, regulating insulin gene expression to human chromosomes 1 and 13. Genomics, 1994. 24(2): p. 403-4. 22.Cai, J., et al., The Role of LMX1A in the Differentiation of Human Embryonic Stem Cells into Midbrain Dopamine Neurons in Culture and After Transplantation into a Parkinson's Disease Model. 2009, Wiley Subscription Services, Inc., A Wiley Company. p. 220-229. 23.Landsberg, R.L., et al., Hindbrain rhombic lip is comprised of discrete progenitor cell populations allocated by Pax6. Neuron, 2005. 48(6): p. 933-47. 24.Millonig, J.H., K.J. Millen, and M.E. Hatten, The mouse Dreher gene LMX1A controls formation of the roof plate in the vertebrate CNS. Nature, 2000. 403(6771): p. 764-769. 25.Dong, W., et al., Hypermethylation-mediated reduction of LMX1A expression in gastric cancer. Cancer Science, 2011. 102(2): p. 361-366. 26.Suske, G., E. Bruford, and S. Philipsen, Mammalian SP/KLF transcription factors: bring in the family. Genomics, 2005. 85(5): p. 551-6. 27.Wimmer, E.A., et al., A Drosophila homologue of human Sp1 is a head-specific segmentation gene. Nature, 1993. 366(6456): p. 690-4. 28.Li, L., et al., Gene regulation by Sp1 and Sp3. Biochem Cell Biol, 2004. 82(4): p. 460-71. 29.Yang, X., et al., O-linkage of N-acetylglucosamine to Sp1 activation domain inhibits its transcriptional capability. Proc Natl Acad Sci U S A, 2001. 98(12): p. 6611-6. 30.Li, L. and J.R. Davie, The role of Sp1 and Sp3 in normal and cancer cell biology. Ann Anat, 2010. 192(5): p. 275-83. 31.Kruger, I., et al., Sp1/Sp3 compound heterozygous mice are not viable: impaired erythropoiesis and severe placental defects. Dev Dyn, 2007. 236(8): p. 2235-44. 32.Suske, G., The Sp-family of transcription factors. Gene, 1999. 238(2): p. 291-300. 33.Davie, J.R., et al., Nuclear organization and chromatin dynamics--Sp1, Sp3 and histone deacetylases. Adv Enzyme Regul, 2008. 48: p. 189-208. 34.Lu, S. and M.C. Archer, Sp1 coordinately regulates de novo lipogenesis and proliferation in cancer cells. Int J Cancer, 2010. 126(2): p. 416-25. 35.Lagger, G., et al., The tumor suppressor p53 and histone deacetylase 1 are antagonistic regulators of the cyclin-dependent kinase inhibitor p21/WAF1/CIP1 gene. Mol Cell Biol, 2003. 23(8): p. 2669-79. 36.Kavurma, M.M., et al., Sp1 phosphorylation regulates apoptosis via extracellular FasL-Fas engagement. J Biol Chem, 2001. 276(7): p. 4964-71. 37.DesJardins, E. and N. Hay, Repeated CT elements bound by zinc finger proteins control the absolute and relative activities of the two principal human c-myc promoters. Mol Cell Biol, 1993. 13(9): p. 5710-24. 38.Olofsson, B.A., et al., Phosphorylation of Sp1 in response to DNA damage by ataxia telangiectasia-mutated kinase. Mol Cancer Res, 2007. 5(12): p. 1319-30. 39.Hahn, W.C. and R.A. Weinberg, Modelling the molecular circuitry of cancer. Nat Rev Cancer, 2002. 2(5): p. 331-41. 40.Hanahan, D. and R.A. Weinberg, The hallmarks of cancer. Cell, 2000. 100(1): p. 57-70. 41.Ganapathy, M., et al., Involvement of FLIP in 2-methoxyestradiol-induced tumor regression in transgenic adenocarcinoma of mouse prostate model. Clin Cancer Res, 2009. 15(5): p. 1601-11. 42.Safe, S. and M. Abdelrahim, Sp transcription factor family and its role in cancer. Eur J Cancer, 2005. 41(16): p. 2438-48. 43.Higgins, K.J., et al., Regulation of vascular endothelial growth factor receptor-2 expression in pancreatic cancer cells by Sp proteins. Biochem Biophys Res Commun, 2006. 345(1): p. 292-301. 44.Bilsland, A.E., et al., Transcriptional repression of telomerase RNA gene expression by c-Jun-NH2-kinase and Sp1/Sp3. Cancer Res, 2006. 66(3): p. 1363-70. 45.Nunes, M.J., et al., Sp proteins play a critical role in histone deacetylase inhibitor-mediated derepression of CYP46A1 gene transcription. J Neurochem, 2010. 113(2): p. 418-31. 46.Lu, F., et al., Chromatin remodeling of the Kaposi's sarcoma-associated herpesvirus ORF50 promoter correlates with reactivation from latency. J Virol, 2003. 77(21): p. 11425-35. 47.Clem, B.F. and B.J. Clark, Association of the mSin3A-histone deacetylase 1/2 corepressor complex with the mouse steroidogenic acute regulatory protein gene. Mol Endocrinol, 2006. 20(1): p. 100-13. 48.Simon, J.A. and C.A. Lange, Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2008. 647(1-2): p. 21-29. 49.Varambally, S., et al., The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature, 2002. 419(6907): p. 624-9. 50.Saramaki, O.R., et al., The gene for polycomb group protein enhancer of zeste homolog 2 (EZH2) is amplified in late-stage prostate cancer. Genes Chromosomes Cancer, 2006. 45(7): p. 639-45. 51.Bracken, A.P., et al., EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J, 2003. 22(20): p. 5323-35. 52.Collett, K., et al., Expression of enhancer of zeste homologue 2 is significantly associated with increased tumor cell proliferation and is a marker of aggressive breast cancer. Clin Cancer Res, 2006. 12(4): p. 1168-74. 53.Bachmann, I.M., et al., EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J Clin Oncol, 2006. 24(2): p. 268-73. 54.Kleer, C.G., et al., EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci U S A, 2003. 100(20): p. 11606-11. 55.Vire, E., et al., The Polycomb group protein EZH2 directly controls DNA methylation. Nature, 2006. 439(7078): p. 871-4. 56.McGarvey, K.M., et al., DNA methylation and complete transcriptional silencing of cancer genes persist after depletion of EZH2. Cancer Res, 2007. 67(11): p. 5097-102. 57.Ohm, J.E., et al., A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet, 2007. 39(2): p. 237-42. 58.Kondo, Y., et al., Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat Genet, 2008. 40(6): p. 741-50. 59.Schlesinger, Y., et al., Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet, 2007. 39(2): p. 232-6. 60.van der Vlag, J. and A.P. Otte, Transcriptional repression mediated by the human polycomb-group protein EED involves histone deacetylation. Nat Genet, 1999. 23(4): p. 474-8. 61.Lai, H.-C., et al., Identification of novel DNA methylation markers in cervical cancer. International Journal of Cancer, 2008. 123(1): p. 161-167. 62.Liu, C.-Y., et al., Characterization of LMX-1A as a metastasis suppressor in cervical cancer. The Journal of Pathology, 2009. 219(2): p. 222-231. 63.Peralta-Zaragoza, O., et al., E6 and E7 oncoproteins from human papillomavirus type 16 induce activation of human transforming growth factor beta1 promoter throughout Sp1 recognition sequence. Viral Immunol, 2006. 19(3): p. 468-80. 64.Dey, A., I.A. Atcha, and S. Bagchi, HPV16 E6 oncoprotein stimulates the transforming growth factor-beta 1 promoter in fibroblasts through a specific GC-rich sequence. Virology, 1997. 228(2): p. 190-9. 65.Hoppe-Seyler, F. and K. Butz, Activation of human papillomavirus type 18 E6-E7 oncogene expression by transcription factor Sp1. Nucleic Acids Res, 1992. 20(24): p. 6701-6. 66.Demeret, C., M. Yaniv, and F. Thierry, The E2 transcriptional repressor can compensate for Sp1 activation of the human papillomavirus type 18 early promoter. J Virol, 1994. 68(11): p. 7075-82. 67.Lin, R.K., et al., Dysregulation of p53/Sp1 control leads to DNA methyltransferase-1 overexpression in lung cancer. Cancer Res, 2010. 70(14): p. 5807-17. 68.Gao, J., et al., Loss of NECL1, a novel tumor suppressor, can be restored in glioma by HDAC inhibitor-Trichostatin A through Sp1 binding site. Glia, 2009. 57(9): p. 989-99. 69.Holland, D., et al., Activation of the enhancer of zeste homologue 2 gene by the human papillomavirus E7 oncoprotein. Cancer Res, 2008. 68(23): p. 9964-72. 70.Boumber, Y.A., et al., An Sp1/Sp3 binding polymorphism confers methylation protection. PLoS Genet, 2008. 4(8): p. e1000162. 71.Palakurthy, R.K., et al., Epigenetic silencing of the RASSF1A tumor suppressor gene through HOXB3-mediated induction of DNMT3B expression. Mol Cell, 2009. 36(2): p. 219-30.
|