(3.230.154.160) 您好!臺灣時間:2021/05/08 01:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:高竺蓮
研究生(外文):Kao,Chu-lien
論文名稱:CD164分子參與癌症形成機制之探討
論文名稱(外文):To investigate the molecular mechanism of CD164 in cancer progression
指導教授:詹益欣詹益欣引用關係
口試委員:黃世明黃紀榕
口試日期:2011-06-16
學位類別:碩士
校院名稱:國防醫學院
系所名稱:微生物及免疫學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:71
外文關鍵詞:CD164
相關次數:
  • 被引用被引用:0
  • 點閱點閱:149
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在婦科的癌症當中,預後相當不良且最致命的癌症即為卵巢癌,其主要細胞來
源約莫九成由上皮組織而來。而不像其他癌症細胞會藉由入侵血管轉移至遠端,脫
落卵巢癌細胞可直接藉由腹腔內的生理液傳播至腹腔各處。在卵巢腫瘤早期發展過
程當中,許多分子表現量的增減扮演相當重要的角色,這些分子不但可幫助腫瘤細
胞抵抗因無法接觸細胞外基質而進行的失巢凋亡(anoikis),並且能導致和細胞存活及
增生相關之 AKT分子磷酸化。目前已知 CD164分子和前列腺癌之轉移相關,我們
假設 CD164這個唾液酸黏蛋白分子會參與腫瘤生成(tumorigenesis),甚至造成癌細胞
的轉移。而且目前由於已知 CD164 在造血前趨細胞中,可因 CXCL12 之刺激與
CXCR4 形成複合物而影響細胞移動的能力。加上已有研究指出 CXCL12 以及它的
受器會參與許多癌細胞的增生及轉移過程。因此我們想探討 CD164分子是否
在腫瘤生成的過程中扮演重要的角色。
實驗結果中發現,CD164 在卵巢上皮癌之細胞株中表現量相較於正常卵巢上皮
細胞會增加許多,而且於卵巢正常上皮細胞株 OSE10中大量表現 CD164分子後,
不僅在細胞型態上發生極大改變,比起野生型及控制組的細胞株而言,引起
Anchorage-Independent Colony Formation 現象也更加明顯。而在惡性邊緣腺瘤細胞
株 ML-46 及正常肺上皮細胞株 BEAS-2B 中也發現相同情形。接著在動物實驗當
中,也證實大量表現 CD164 分子的卵巢上皮細胞株不但可形成腫瘤,而且生長速
度比癌細胞還快上許多。除此之外,當大量表現 CD164分子後,會造成細胞與細胞
間質的黏附能力下降,而細胞之 E-cadherin 及 p-Akt 的表現量會增加,當利用
CXCR4 之抑制劑及 PI3K 抑制劑作用後發現 p-Akt 表現會遭抑制。由於實驗過程
中發現 CD164 分子會導致細胞迅速增生,因此利用流式細胞儀檢測大量表現
CD164 分子之細胞株後,發現其細胞週期的確受到影響。由以上研究結果,強烈暗
示著 CD164分子參與調控卵巢腫瘤生成機制。之後,我們希望能更深入釐清 CD164
在不同癌症生成可扮演之角色,期許在未來可做為臨床上癌症治療的標的之一。
Among the gynecological tumors, the most lethal cancer is the ovarian cancer and about ninety percent of the ovarian cancers are from the epithelial tissue. In contrast to most other type of carcinomas, dissemination of ovarian cancers through vasculature is rare and exfoliation is the most common pathway for metastasis. Exfoliated tumor cells of ovarian cancers are transported by peritoneal fluid and implant on the peritoneum and mesothelial linings of pelvic and abdominal organs. The fluctuating expression of different molecules may play an important role in the processes of ovarian tumor development. These molecules not only help tumor cells to resist anoikis,but can lead to cell survival and proliferation due to activating AKT phosphorylation. Owing to evidences indicating that CD164 might play a role in metastasis of prostate cancer and CD164 can modulate the CXCL12-mediated migration by forming complex with CXCR4 in hematopoietic progenitor cells, we propose that the CD164, a sialomucin, may be involved in tumorigenesis and cancer metastasis. From the preliminary results we found that the expression of CD164 in ovarian epithelial cancer cell lines was higher than normal ovarian epithelial cells and depended on their malignancy. In OSE10, a normal epithelial ovarian cell line, overexpressing CD164 not only changed the cell morphology, but showed more colonies in anchorage-independent colony formation assay than wild-type and vehicle control cells, and the similar results were noted in human ovarian epithelial borderline cell lines, ML46 and in BEAS-2B, a lung normal epithelial cell line using the same assay. Then in the animal model we also found that CD164 overexpressing ovarian epithelial cells not only formed tumors, but grew faster than ovarian cancer cells. Furthermore, overexpression of CD164 caused up-regulation of E-cadherin and p-Akt but suppressed by CXCR4 inhibitor and PI3K inhibitor and the cell cycle was indeed affected. These results strongly suggest that CD164 is involved in the regulation of molecular mechanisms of ovarian tumor formation.
壹 、 中文摘要 ………………………………………….…………………I
貳 、 英文摘要……………………………………………………………...II
參 、 緒論
一 . 腫瘤生成 …………………………………………………………………….1
二 . 卵巢上皮細胞癌(Epithelial ovarian cancer) ………………………………2
三 . CD164 分子 …………………………………………………………………5
四 . CXCL12/CXCR4 axis ………………………………………………………6
五 . 細胞週期……………………………………………………………………...8
六 . 研究動機與方向…………………………………………………………….10
肆 、 實驗方法與材料
一 . 細胞培養 ( cell culture )……………………………………………………12
二 . 質體的抽取與製備………………………………………………….………12
三. 細胞轉染( Transfection )及慢病毒製備 (Lentivirus production)…………...14
四 . 慢病毒感染 ( Lentivirus infection )………………………………………...15
五 . 藥物篩選持續穩定表現之細胞株 ( Stable clone )………………..……….15
六 . 細胞蛋白質萃取 ( Protein extraction )……………………………………..15
七 . 核蛋白萃取………………………………………………………………….16
八 . 西方墨點法 ( Western blotting )……………………………………………16
九 . 細胞週期分析 (Cell cycle analysis)………………………………………..18
十 . Colony formation assay ……………………………………………………...18
十一 .Xenograft Tumors in Nude Mice ………………………………………….19
十二 . 細胞貼附力分析 (Cell adhesion assay)…………………………………19
十三 . 細胞增生試驗 (Cell proliferation assay)………………………………..20
十四 . 利用流式細胞儀分析不同細胞株細胞中CD164 分子之表現 ……….20
十五 . 製備勝任細胞(Competent cells)………………………………………... 21
十六 .統計方法………………………..................................................................22
伍 、 結果
一 . 確認不同細胞株之CD164 表現量…………………………………………23
二 . 藥物篩選過度表現CD164 基因之效率……………………………………23
三 . 使用流式細胞儀探討不同細胞株中CD164 分子之表現量………………23
四 . 野生型、控制組及過度表現CD164 之OSE10 及BEAS-2B 細胞之型態…24
五 . 探討CD164 分子對於細胞貼附力影響分析………………………………24
六 . 探討CD164 對於上皮-間質轉化相關分子之影響………………………..25
七 . 探討CD164 對於細胞核內EMT 相關分子之影響………………………..25
八 . 探討EMT 相關分子在不同細胞株之表現量……………………………..26
九 . 探討CD164 對於細胞增生速率之影響……………………………………26
十 . 探討CD164 分子對於腫瘤生成(tumorigenesis)之影響…………………..27
十一 . Xenograft Tumors in Nude Mice …………………………………………27
十二 . CD164 分子對細胞週期之影響 …………………………………………28
十三 . 探討CD164 分子對於AKT 磷酸化,BAX 及Bcl-2 之影響…………… 29
十四 . SDF-1以及CXCR4 抑制劑AMD3100 對於大量表現CD164 之OSE10
細胞株及控制組(Vehicle)細胞株訊息傳遞之影響………….………..29
十五 . 探討存在 SDF-1刺激之下,AMD3100 對於大量表現CD164 之OSE10
細胞株及控制組(Vehicle)細胞株訊息傳遞之影響………….…………..30
十六 . 探討PI3K 抑制劑LY294002 對於大量表現CD164 之OSE10 細胞株及
控制組(Vehicle)細胞株訊息傳遞之影響………………………………31
十七 . 利用AMD3100 及LY294002 探討其對於過度表現CD164 分子之OSE10
細胞株之Anchorage-Independent Colony Formation 影響……………31
陸 、 討論 ………………………………………………………………… 33
柒 、 圖表
圖1. CD164 分子在不同細胞株之表現量…………………………………….…39
圖2. OSE10 細胞CD164 基因過度表現之效率………………………………...40
圖3. OSE10 細胞CD164 基因過度表現之效率………………………………...41
圖4 . 野生型、控制組及過度表現CD164 之OSE10 及BEAS-2B 細胞之型態.. 42
圖5 . CD164 分子對於細胞貼附力影響分析………………………..………….43
圖6 . CD164 對於EMT 相關分子之影響……………………………………....44
圖7 . CD164 對於細胞核內EMT 相關分子之影響 ……………………….….45
圖8 . EMT 相關分子在不同細胞株之表現量………………………………… 46
圖9 . CD164 對於細胞增生速率之影響 ……………………………………....47
圖10 . Soft agar colony formation assay…………………………………… ...... 48
圖11 .Xenograft Tumors in Nude Mice ……………………………………..…..49
圖12 .CD164 分子對細胞週期之影響………………………………………….50
圖13 . 探討CD164 分子對於AKT 磷酸化,BAX 及Bcl-2 之影響 ………….51
圖14 . SDF-1以及CXCR4 抑制劑AMD3100 對於大量表現CD164 之OSE10
細胞株及控制組(Vehicle)細胞株訊息傳遞之影響…………………..52
圖15 . 探討存在 SDF-1刺激之下,AMD3100 對於大量表現CD164 之OSE10
細胞株及控制組(Vehicle)細胞株訊息傳遞之影響……………………53
圖16 . 探討PI3K 抑制劑LY294002 對於大量表現CD164 之OSE10 細胞株及
控制組(Vehicle)細胞株訊息傳遞之影響…………………….……..…54
圖17 . 利用AMD3100 及LY294002 探討其對於過度表現CD164 分子之OSE10
細胞株之Anchorage-Independent Colony Formation 影響……..…… 55
圖18 . CD164 分子影響卵巢上皮細胞腫瘤生成模擬圖 ……………………..56
捌 、 參考文獻…………………………………………………………… 57
1. Douc-Rasy, S., et al., High incidence of loss of heterozygosity and abnormal imprinting
of H19 and IGF2 genes in invasive cervical carcinomas. Uncoupling of H19 and IGF2
expression and biallelic hypomethylation of H19. Oncogene, 1996. 12(2): p. 423-30.
2. Chang, F., et al., Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis,
and neoplastic transformation: a target for cancer chemotherapy. Leukemia, 2003.
17(3): p. 590-603.
3. Isaacs, W. and T. Kainu, Oncogenes and tumor suppressor genes in prostate cancer.
Epidemiol Rev, 2001. 23(1): p. 36-41.
4. Chambers, A.F., A.C. Groom, and I.C. MacDonald, Dissemination and growth of cancer
cells in metastatic sites. Nat Rev Cancer, 2002. 2(8): p. 563-72.
5. Woodhouse, E.C., R.F. Chuaqui, and L.A. Liotta, General mechanisms of metastasis.
Cancer, 1997. 80(8 Suppl): p. 1529-37.
6. Zhang, Q., et al., The role of the intravascular microenvironment in spontaneous
metastasis development. Int J Cancer. 126(11): p. 2534-41.
7. Mehes, G., et al., Circulating breast cancer cells are frequently apoptotic. Am J Pathol,
2001. 159(1): p. 17-20.
8. Weigelt, B., J.L. Peterse, and L.J. van 't Veer, Breast cancer metastasis: markers and
models. Nat Rev Cancer, 2005. 5(8): p. 591-602.
9. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell. 144(5):
p. 646-74.
10. Sodek, K.L., M.J. Ringuette, and T.J. Brown, Compact spheroid formation by ovarian
cancer cells is associated with contractile behavior and an invasive phenotype. Int J
Cancer, 2009. 124(9): p. 2060-70.
11. Lengyel, E., Ovarian cancer development and metastasis. Am J Pathol. 177(3): p.
1053-64.
12. Kurman, R.J. and M. Shih Ie, The origin and pathogenesis of epithelial ovarian cancer:
a proposed unifying theory. Am J Surg Pathol. 34(3): p. 433-43.
13. Cannistra, S.A., Cancer of the ovary. N Engl J Med, 2004. 351(24): p. 2519-29.
14. Shield, K., et al., Multicellular spheroids in ovarian cancer metastases: Biology and
pathology. Gynecol Oncol, 2009. 113(1): p. 143-8.
15. Naora, H. and D.J. Montell, Ovarian cancer metastasis: integrating insights from
disparate model organisms. Nat Rev Cancer, 2005. 5(5): p. 355-66.
16. Ahmed, N., E.W. Thompson, and M.A. Quinn, Epithelial-mesenchymal interconversions
in normal ovarian surface epithelium and ovarian carcinomas: an exception to the
58
norm. J Cell Physiol, 2007. 213(3): p. 581-8.
17. Wong, A.S. and B.M. Gumbiner, Adhesion-independent mechanism for suppression of
tumor cell invasion by E-cadherin. J Cell Biol, 2003. 161(6): p. 1191-203.
18. Sundfeldt, K., Cell-cell adhesion in the normal ovary and ovarian tumors of epithelial
origin; an exception to the rule. Mol Cell Endocrinol, 2003. 202(1-2): p. 89-96.
19. Reddy, P., et al., Formation of E-cadherin-mediated cell-cell adhesion activates AKT
and mitogen activated protein kinase via phosphatidylinositol 3 kinase and
ligand-independent activation of epidermal growth factor receptor in ovarian cancer
cells. Mol Endocrinol, 2005. 19(10): p. 2564-78.
20. Ivascu, A. and M. Kubbies, Diversity of cell-mediated adhesions in breast cancer
spheroids. Int J Oncol, 2007. 31(6): p. 1403-13.
21. Luebke-Wheeler, J.L., et al., E-cadherin protects primary hepatocyte spheroids from
cell death by a caspase-independent mechanism. Cell Transplant, 2009. 18(12): p.
1281-7.
22. De Santis, G., et al., E-cadherin directly contributes to PI3K/AKT activation by
engaging the PI3K-p85 regulatory subunit to adherens junctions of ovarian carcinoma
cells. Oncogene, 2009. 28(9): p. 1206-17.
23. Hennessy, B.T., et al., Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat
Rev Drug Discov, 2005. 4(12): p. 988-1004.
24. Mishra, R., Glycogen synthase kinase 3 beta: can it be a target for oral cancer. Mol
Cancer. 9: p. 144.
25. Cao, Q., X. Lu, and Y.J. Feng, Glycogen synthase kinase-3beta positively regulates the
proliferation of human ovarian cancer cells. Cell Res, 2006. 16(7): p. 671-7.
26. Goto, H., et al., Expression of cyclin D1 and GSK-3beta and their predictive value of
prognosis in squamous cell carcinomas of the tongue. Oral Oncol, 2002. 38(6): p.
549-56.
27. Leis, H., et al., Expression, localization, and activity of glycogen synthase kinase 3beta
during mouse skin tumorigenesis. Mol Carcinog, 2002. 35(4): p. 180-5.
28. Datta, S.R., et al., Akt phosphorylation of BAD couples survival signals to the
cell-intrinsic death machinery. Cell, 1997. 91(2): p. 231-41.
29. Watt, S.M., et al., CD164, a novel sialomucin on CD34(+) and erythroid subsets, is
located on human chromosome 6q21. Blood, 1998. 92(3): p. 849-66.
30. Watt, S.M. and J.Y. Chan, CD164--a novel sialomucin on CD34+ cells. Leuk Lymphoma,
2000. 37(1-2): p. 1-25.
31. Zannettino, A.C., et al., The sialomucin CD164 (MGC-24v) is an adhesive glycoprotein
expressed by human hematopoietic progenitors and bone marrow stromal cells that
serves as a potent negative regulator of hematopoiesis. Blood, 1998. 92(8): p.
2613-28.
59
32. Havens, A.M., et al., The role of sialomucin CD164 (MGC-24v or endolyn) in prostate
cancer metastasis. BMC Cancer, 2006. 6: p. 195.
33. Balkwill, F., Cancer and the chemokine network. Nat Rev Cancer, 2004. 4(7): p. 540-50.
34. Murdoch, C., CXCR4: chemokine receptor extraordinaire. Immunol Rev, 2000. 177: p.
175-84.
35. Nagasawa, T., K. Tachibana, and T. Kishimoto, A novel CXC chemokine PBSF/SDF-1 and
its receptor CXCR4: their functions in development, hematopoiesis and HIV infection.
Semin Immunol, 1998. 10(3): p. 179-85.
36. Ma, Q., et al., Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron
migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci U S A, 1998. 95(16):
p. 9448-53.
37. Ratajczak, M.Z., et al., The pleiotropic effects of the SDF-1-CXCR4 axis in
organogenesis, regeneration and tumorigenesis. Leukemia, 2006. 20(11): p. 1915-24.
38. Petit, I., D. Jin, and S. Rafii, The SDF-1-CXCR4 signaling pathway: a molecular hub
modulating neo-angiogenesis. Trends Immunol, 2007. 28(7): p. 299-307.
39. Forde, S., et al., Endolyn (CD164) modulates the CXCL12-mediated migration of
umbilical cord blood CD133+ cells. Blood, 2007. 109(5): p. 1825-33.
40. Teicher, B.A. and S.P. Fricker, CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer
Res. 16(11): p. 2927-31.
41. Barbolina, M.V., et al., Microenvironmental regulation of chemokine (C-X-C-motif)
receptor 4 in ovarian carcinoma. Mol Cancer Res. 8(5): p. 653-64.
42. Zou, W., et al., Stromal-derived factor-1 in human tumors recruits and alters the
function of plasmacytoid precursor dendritic cells. Nat Med, 2001. 7(12): p. 1339-46.
43. Koepp, D.M., J.W. Harper, and S.J. Elledge, How the cyclin became a cyclin: regulated
proteolysis in the cell cycle. Cell, 1999. 97(4): p. 431-4.
44. Sherr, C.J. and J.M. Roberts, CDK inhibitors: positive and negative regulators of
G1-phase progression. Genes Dev, 1999. 13(12): p. 1501-12.
45. Ho, A. and S.F. Dowdy, Regulation of G(1) cell-cycle progression by oncogenes and
tumor suppressor genes. Curr Opin Genet Dev, 2002. 12(1): p. 47-52.
46. Zetterberg, A., O. Larsson, and K.G. Wiman, What is the restriction point? Curr Opin
Cell Biol, 1995. 7(6): p. 835-42.
47. Ezhevsky, S.A., et al., Differential regulation of retinoblastoma tumor suppressor
protein by G(1) cyclin-dependent kinase complexes in vivo. Mol Cell Biol, 2001. 21(14):
p. 4773-84.
48. Hurford, R.K., Jr., et al., pRB and p107/p130 are required for the regulated expression
of different sets of E2F responsive genes. Genes Dev, 1997. 11(11): p. 1447-63.
49. Lundberg, A.S. and R.A. Weinberg, Functional inactivation of the retinoblastoma
protein requires sequential modification by at least two distinct cyclin-cdk complexes.
60
Mol Cell Biol, 1998. 18(2): p. 753-61.
50. D'Andrilli, G., et al., Cell cycle genes in ovarian cancer: steps toward earlier diagnosis
and novel therapies. Clin Cancer Res, 2004. 10(24): p. 8132-41.
51. Barbieri, F., A. Bajetto, and T. Florio, Role of chemokine network in the development
and progression of ovarian cancer: a potential novel pharmacological target. J Oncol.
2010: p. 426956.
52. Kajiyama, H., et al., Involvement of SDF-1alpha/CXCR4 axis in the enhanced peritoneal
metastasis of epithelial ovarian carcinoma. Int J Cancer, 2008. 122(1): p. 91-9.
53. Levoye, A., et al., CXCR7 heterodimerizes with CXCR4 and regulates CXCL12-mediated
G protein signaling. Blood, 2009. 113(24): p. 6085-93.
54. Kalatskaya, I., et al., AMD3100 is a CXCR7 ligand with allosteric agonist properties.
Mol Pharmacol, 2009. 75(5): p. 1240-7.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔