|
1. Douc-Rasy, S., et al., High incidence of loss of heterozygosity and abnormal imprinting of H19 and IGF2 genes in invasive cervical carcinomas. Uncoupling of H19 and IGF2 expression and biallelic hypomethylation of H19. Oncogene, 1996. 12(2): p. 423-30. 2. Chang, F., et al., Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia, 2003. 17(3): p. 590-603. 3. Isaacs, W. and T. Kainu, Oncogenes and tumor suppressor genes in prostate cancer. Epidemiol Rev, 2001. 23(1): p. 36-41. 4. Chambers, A.F., A.C. Groom, and I.C. MacDonald, Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer, 2002. 2(8): p. 563-72. 5. Woodhouse, E.C., R.F. Chuaqui, and L.A. Liotta, General mechanisms of metastasis. Cancer, 1997. 80(8 Suppl): p. 1529-37. 6. Zhang, Q., et al., The role of the intravascular microenvironment in spontaneous metastasis development. Int J Cancer. 126(11): p. 2534-41. 7. Mehes, G., et al., Circulating breast cancer cells are frequently apoptotic. Am J Pathol, 2001. 159(1): p. 17-20. 8. Weigelt, B., J.L. Peterse, and L.J. van 't Veer, Breast cancer metastasis: markers and models. Nat Rev Cancer, 2005. 5(8): p. 591-602. 9. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell. 144(5): p. 646-74. 10. Sodek, K.L., M.J. Ringuette, and T.J. Brown, Compact spheroid formation by ovarian cancer cells is associated with contractile behavior and an invasive phenotype. Int J Cancer, 2009. 124(9): p. 2060-70. 11. Lengyel, E., Ovarian cancer development and metastasis. Am J Pathol. 177(3): p. 1053-64. 12. Kurman, R.J. and M. Shih Ie, The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory. Am J Surg Pathol. 34(3): p. 433-43. 13. Cannistra, S.A., Cancer of the ovary. N Engl J Med, 2004. 351(24): p. 2519-29. 14. Shield, K., et al., Multicellular spheroids in ovarian cancer metastases: Biology and pathology. Gynecol Oncol, 2009. 113(1): p. 143-8. 15. Naora, H. and D.J. Montell, Ovarian cancer metastasis: integrating insights from disparate model organisms. Nat Rev Cancer, 2005. 5(5): p. 355-66. 16. Ahmed, N., E.W. Thompson, and M.A. Quinn, Epithelial-mesenchymal interconversions in normal ovarian surface epithelium and ovarian carcinomas: an exception to the 58 norm. J Cell Physiol, 2007. 213(3): p. 581-8. 17. Wong, A.S. and B.M. Gumbiner, Adhesion-independent mechanism for suppression of tumor cell invasion by E-cadherin. J Cell Biol, 2003. 161(6): p. 1191-203. 18. Sundfeldt, K., Cell-cell adhesion in the normal ovary and ovarian tumors of epithelial origin; an exception to the rule. Mol Cell Endocrinol, 2003. 202(1-2): p. 89-96. 19. Reddy, P., et al., Formation of E-cadherin-mediated cell-cell adhesion activates AKT and mitogen activated protein kinase via phosphatidylinositol 3 kinase and ligand-independent activation of epidermal growth factor receptor in ovarian cancer cells. Mol Endocrinol, 2005. 19(10): p. 2564-78. 20. Ivascu, A. and M. Kubbies, Diversity of cell-mediated adhesions in breast cancer spheroids. Int J Oncol, 2007. 31(6): p. 1403-13. 21. Luebke-Wheeler, J.L., et al., E-cadherin protects primary hepatocyte spheroids from cell death by a caspase-independent mechanism. Cell Transplant, 2009. 18(12): p. 1281-7. 22. De Santis, G., et al., E-cadherin directly contributes to PI3K/AKT activation by engaging the PI3K-p85 regulatory subunit to adherens junctions of ovarian carcinoma cells. Oncogene, 2009. 28(9): p. 1206-17. 23. Hennessy, B.T., et al., Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov, 2005. 4(12): p. 988-1004. 24. Mishra, R., Glycogen synthase kinase 3 beta: can it be a target for oral cancer. Mol Cancer. 9: p. 144. 25. Cao, Q., X. Lu, and Y.J. Feng, Glycogen synthase kinase-3beta positively regulates the proliferation of human ovarian cancer cells. Cell Res, 2006. 16(7): p. 671-7. 26. Goto, H., et al., Expression of cyclin D1 and GSK-3beta and their predictive value of prognosis in squamous cell carcinomas of the tongue. Oral Oncol, 2002. 38(6): p. 549-56. 27. Leis, H., et al., Expression, localization, and activity of glycogen synthase kinase 3beta during mouse skin tumorigenesis. Mol Carcinog, 2002. 35(4): p. 180-5. 28. Datta, S.R., et al., Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell, 1997. 91(2): p. 231-41. 29. Watt, S.M., et al., CD164, a novel sialomucin on CD34(+) and erythroid subsets, is located on human chromosome 6q21. Blood, 1998. 92(3): p. 849-66. 30. Watt, S.M. and J.Y. Chan, CD164--a novel sialomucin on CD34+ cells. Leuk Lymphoma, 2000. 37(1-2): p. 1-25. 31. Zannettino, A.C., et al., The sialomucin CD164 (MGC-24v) is an adhesive glycoprotein expressed by human hematopoietic progenitors and bone marrow stromal cells that serves as a potent negative regulator of hematopoiesis. Blood, 1998. 92(8): p. 2613-28. 59 32. Havens, A.M., et al., The role of sialomucin CD164 (MGC-24v or endolyn) in prostate cancer metastasis. BMC Cancer, 2006. 6: p. 195. 33. Balkwill, F., Cancer and the chemokine network. Nat Rev Cancer, 2004. 4(7): p. 540-50. 34. Murdoch, C., CXCR4: chemokine receptor extraordinaire. Immunol Rev, 2000. 177: p. 175-84. 35. Nagasawa, T., K. Tachibana, and T. Kishimoto, A novel CXC chemokine PBSF/SDF-1 and its receptor CXCR4: their functions in development, hematopoiesis and HIV infection. Semin Immunol, 1998. 10(3): p. 179-85. 36. Ma, Q., et al., Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci U S A, 1998. 95(16): p. 9448-53. 37. Ratajczak, M.Z., et al., The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia, 2006. 20(11): p. 1915-24. 38. Petit, I., D. Jin, and S. Rafii, The SDF-1-CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis. Trends Immunol, 2007. 28(7): p. 299-307. 39. Forde, S., et al., Endolyn (CD164) modulates the CXCL12-mediated migration of umbilical cord blood CD133+ cells. Blood, 2007. 109(5): p. 1825-33. 40. Teicher, B.A. and S.P. Fricker, CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res. 16(11): p. 2927-31. 41. Barbolina, M.V., et al., Microenvironmental regulation of chemokine (C-X-C-motif) receptor 4 in ovarian carcinoma. Mol Cancer Res. 8(5): p. 653-64. 42. Zou, W., et al., Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat Med, 2001. 7(12): p. 1339-46. 43. Koepp, D.M., J.W. Harper, and S.J. Elledge, How the cyclin became a cyclin: regulated proteolysis in the cell cycle. Cell, 1999. 97(4): p. 431-4. 44. Sherr, C.J. and J.M. Roberts, CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev, 1999. 13(12): p. 1501-12. 45. Ho, A. and S.F. Dowdy, Regulation of G(1) cell-cycle progression by oncogenes and tumor suppressor genes. Curr Opin Genet Dev, 2002. 12(1): p. 47-52. 46. Zetterberg, A., O. Larsson, and K.G. Wiman, What is the restriction point? Curr Opin Cell Biol, 1995. 7(6): p. 835-42. 47. Ezhevsky, S.A., et al., Differential regulation of retinoblastoma tumor suppressor protein by G(1) cyclin-dependent kinase complexes in vivo. Mol Cell Biol, 2001. 21(14): p. 4773-84. 48. Hurford, R.K., Jr., et al., pRB and p107/p130 are required for the regulated expression of different sets of E2F responsive genes. Genes Dev, 1997. 11(11): p. 1447-63. 49. Lundberg, A.S. and R.A. Weinberg, Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin-cdk complexes. 60 Mol Cell Biol, 1998. 18(2): p. 753-61. 50. D'Andrilli, G., et al., Cell cycle genes in ovarian cancer: steps toward earlier diagnosis and novel therapies. Clin Cancer Res, 2004. 10(24): p. 8132-41. 51. Barbieri, F., A. Bajetto, and T. Florio, Role of chemokine network in the development and progression of ovarian cancer: a potential novel pharmacological target. J Oncol. 2010: p. 426956. 52. Kajiyama, H., et al., Involvement of SDF-1alpha/CXCR4 axis in the enhanced peritoneal metastasis of epithelial ovarian carcinoma. Int J Cancer, 2008. 122(1): p. 91-9. 53. Levoye, A., et al., CXCR7 heterodimerizes with CXCR4 and regulates CXCL12-mediated G protein signaling. Blood, 2009. 113(24): p. 6085-93. 54. Kalatskaya, I., et al., AMD3100 is a CXCR7 ligand with allosteric agonist properties. Mol Pharmacol, 2009. 75(5): p. 1240-7.
|