跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/03/16 15:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:梁雅淳
研究生(外文):Liang, Yachun
論文名稱:研究蒽醌衍生物於肺癌細胞及細胞核重新編程中做為潛力聚腺嘌呤雙磷酸核糖聚合酶抑制劑
論文名稱(外文):Investigation of some selected anthraquinone derivatives as potential PARP inhibitors in lung cancer cells and nuclear reprogramming
指導教授:黃旭山黃旭山引用關係邱士華邱士華引用關係
指導教授(外文):Huang, HsushanChiou, Shihhwa
口試委員:黃旭山邱士華林敬哲林本元
口試委員(外文):Huang, HsushanChiou, ShihhwaLin, JingjerLin, Penyuan
口試日期:2011-05-27
學位類別:碩士
校院名稱:國防醫學院
系所名稱:藥學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:75
中文關鍵詞:蒽醌肺癌細胞核重新編程聚腺嘌呤雙磷酸核糖聚合酶抑制劑
外文關鍵詞:AnthraquinoneLung cancerNuclear reprogrammingPARP inhibitor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
第一型聚腺嘌呤雙磷酸核糖聚合酶 (poly(ADP-ribose) polymerase-1, PARP-1) 是豐富的核內蛋白,是一個與染色質結構及DNA修復有關的多功能調控蛋白。目前已經證實有許多癌症都會高度表現第一型聚腺嘌呤雙磷酸核糖聚合酶,所以聚腺嘌呤雙磷酸核糖聚合酶抑制劑應是有效治療腫瘤的藥物。生殖腺BRCA基因突變的情況下,若媒介第一型聚腺嘌呤雙磷酸核糖聚合酶活化修復受損癌細胞DNA,會使乳癌細胞對聚腺嘌呤雙磷酸核糖聚合酶抑制劑敏感性增加。BRCA基因突變也在非小細胞肺癌中發現。我們找尋並發展帶有蒽醌 (anthraquinone) 的藥物核心且部分媒介聚腺嘌呤雙磷酸核糖聚合酶而對非小細胞肺癌有細胞毒性的領導化合物。另一方面,目前已由基因層面證實在高效率重新編程的細胞 (efficient reprogramming clones) 中,與修復DNA /改變組蛋白構型的基因表現量上升。我們發現老鼠胚胎纖維母細胞 (mouse embryonic fibroblast, MEFs) 與誘導性多能幹細胞 (induced pluripotent stem cells, iPS cells) 第一型聚腺嘌呤雙磷酸核糖聚合酶表現量不同。在重新編程的過程中,處理聚腺嘌呤雙磷酸核糖聚合酶抑制劑及我們證實具有抑制聚腺嘌呤雙磷酸核糖聚合酶的蒽醌衍生物 (NSC747854) ,可能會抑制細胞群落形成的效率並降低鹼性磷酸酶 (alkaline phosphatase) 的分泌。
The abundant nuclear enzyme poly (ADP-ribose) polymerase-1 (PARP-1), a multifunctional regulator of chromatin structure and DNA repair. High expression of PARP-1 has been indicated in several cancer types, so inhibitors of PARP-1 might be effective as therapeutic agents for the treatment of tumors. Germline mutations in the genes BRCA sensitize breast cancer cells to PARP inhibitors in a PARP-1-dependent manner. BRCA mutation also has been observed in non-small-cell lung cancers (NSCLCs). We screen and develop some lead compounds with anthraquinone-based pharmacophore, which have cytotoxicity to NSCLCs partly via inhibiting PARP activity. Global gene expression profiles demonstrated some up-regulated genes regarding DNA repair/histone conformational change in the efficient reprogramming clones. We found expression of PARP-1 is different between mouse embryonic fibroblast (MEFs) and induced pluripotent stem (iPS) cells. During reprogramming process, treating with PARP inhibitor and our found one putative PARP inhibitor of anthraquinone derivatives (NSC747854) might suppress the efficiency of colony formation and decrease secretion of alkaline phosphatase.
總目錄

正文目錄……………………………………………………………………… II
表目錄………………………………………………………………………… IV
圖目錄………………………………………………………………………… V
中文摘要…………………………………………………………………………V II
英文摘要…………………………………………………………………………V III

正文目錄

第一章 緒論…………………………………………………………………1
第一節、前言..………………………………………………………………1
壹、 聚腺嘌呤雙磷酸核糖聚合酶 (poly(ADP-ribose) polymerase, PARP)…………………………………………………………………………………1
貳、 PARP抑制劑 (PARP inhibitors)…………………………………………………3
參、 非小細胞肺癌 (non-small cell lung cancer, NSCLC)…6
肆、 重新編程 (Reprogramming)………………………………………………………………7
第二節、研究動機與目的……………………………………………………12
第二章 研究材料及方法……………………………………………………14
壹、 細胞培養 (Cell culture)………………………………………………………………14
貳、 細胞計數 (Cell counting)……………………………………………………………14
參、 細胞存活率分析 (MTT assay)…………………………………………………………15
肆、 聚腺嘌呤雙磷酸核糖聚合酶活性抑制測試 (PARP inhibitory assay)…………………………………………………………………………………15
伍、 質體製備 (Plasmid preparation)………………………………………………16
陸、 西方墨點法 (Western blotting)…………………………………………………18
柒、 即時定量聚合酶鏈鎖反應 (quantitative polymerase chain reaction, qPCR)…………………………………………………………………………………20
捌、 小鼠胚胎纖維母細胞之建立 (Establish mouse embryonic fibroblast)…………………………………………………………………………………21
玖、 餵養細胞之製備 (Preparation of feeder cells)……………22
壹拾、 重新編程 (Reprogramming)………………………………………………………………23
壹拾壹、 PARP抑制劑處理 (PARP inhibitor treatment)……………………24
壹拾參、 鹼性磷酸酶染色 (Alkaline phosphatase staining, AP staining)……………………………………………………………………………………24
壹拾肆、 化學合成……………………………………………………………24
第三章 研究結果………………………………………………………………29
壹、 挑選化合物進行PARP抑制劑篩選…………………………………29
貳、 化合物於細胞實驗結果……………………………………………34
參、 PARP活性抑制測試…………………………………………………40
肆、 PARP抑制劑於重新編程過程處理之影響…………………………43
伍、 sh PARP-1於重編程過程處理之影響……………………………53
第四章 實驗討論………………………………………………………………56
第五章 參考文獻………………………………………………………………61

表目錄

表1、美國國家癌症研究中心 (National cancer institute, NCI) 於非小細胞肺癌 (A549、H322M、HOP-92、H460及H23) 進行SRB assay的各種濃度結果…………………………………………………………………………………33

圖目錄

圖1、由交互作用 (interaction) 層面挑選可能為PARP抑制劑之化合物…31
圖2、兩種癌細胞處理候選化合物及PARP抑制劑後之存活率…………………36
圖3、候選化合物在癌細胞與正常細胞之IC50比較……………………………38
圖4、PARP活性抑制試驗結果……………………………………………………41
圖5、處理不同濃度PARP抑制劑 (3-AB) 於重新編程後第六天MEF細胞型態……………………………………………………………………………………45
圖6、處理不同濃度PARP抑制劑 (PJ34) 於重新編程後第六天MEF細胞型
態……………………………………………………………………………46
圖7、處理不同濃度PARP抑制劑 (3-AB) 於重新編程後第十七天MEF細胞型態……………………………………………………………………………………47
圖8、處理不同濃度PARP抑制劑 (PJ34) 於重新編程後第十七天MEF細胞型態……………………………………………………………………………………48
圖9、處理不同濃度PARP抑制劑 (3-AB) 鹼性磷酸酶活性試驗………………49
圖10、處理不同濃度PARP抑制劑 (PJ34) 鹼性磷酸酶活性試驗……………50
圖11、處理不同濃度PARP抑制劑候選化合物 (NSC747854) 鹼性磷酸酶活
性試驗………………………………………………………………………………51
圖12、確認shPARP-1調降 (knockdown) 效率………………………………54
圖13、送入shPARP-1重新編程之鹼性磷酸酶活性試驗………………………55



1.Krishnakumar R, Kraus WL. The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol Cell. 2010;39:8-24.
2.Annunziata C.M., J. OS. Poly (ADP-ribose) polymerase as a novel therapeutic target in cancer. Clinical Cancer Research. 2010;16:4517-26.
3.El-Khamisy SF, Masutani M, Suzuki H, Caldecott KW. A requirement for PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA damage. Nucleic Acids Res. 2003;31:5526-33.
4.Kraus WL. Transcriptional control by PARP-1: chromatin modulation, enhancer-binding, coregulation, and insulation. Curr Opin Cell Biol. 2008;20:294-302.
5.Meyer-Ficca ML, Meyer RG, Jacobson EL, Jacobson MK. Poly(ADP-ribose) polymerases: managing genome stability. Int J Biochem Cell Biol. 2005;37:920-6.
6.Nosho K, Yamamoto H, Mikami M, Taniguchi H, Takahashi T, Adachi Y, et al. Overexpression of poly(ADP-ribose) polymerase-1 (PARP-1) in the early stage of colorectal carcinogenesis. Eur J Cancer. 2006;42:2374-81.
7.Csete B, Lengyel Z, Kadar Z, Battyani Z. Poly(adenosine diphosphate-ribose) polymerase-1 expression in cutaneous malignant melanomas as a new molecular marker of aggressive tumor. Pathol Oncol Res. 2009;15:47-53.
8.Domagala P, Huzarski T, Lubinski J, Gugala K, Domagala W. PARP-1 expression in breast cancer including BRCA1-associated, triple negative and basal-like tumors: possible implications for PARP-1 inhibitor therapy. Breast Cancer Res Treat. 2011.
9.Ahmad M, Torky A, Glahn F, Scheubel RJ, Foth H. PARP-1 expression and activity in primary human lung cells. Arch Toxicol. 2010.
10.Gartner EM, Burger AM, Lorusso PM. Poly(adp-ribose) polymerase inhibitors: a novel drug class with a promising future. Cancer J. 2010;16:83-90.
11.Cipak L, Jantova S. PARP-1 inhibitors: a novel genetically specific agents for cancer therapy. Neoplasma. 2010;57:401-5.
12.Tong Y, Bouska JJ, Ellis PA, Johnson EF, Leverson J, Liu X, et al. Synthesis and evaluation of a new generation of orally efficacious benzimidazole-based poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors as anticancer agents. J Med Chem. 2009;52:6803-13.
13.Han W, Li X, Fu X. The macro domain protein family: structure, functions, and their potential therapeutic implications. Mutat Res. 2011.
14.Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434:917-21.
15.Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005;434:913-7.
16.Griffin RJ, Pemberton LC, Rhodes D, Bleasdale C, Bowman K, Calvert AH, et al. Novel potent inhibitors of the DNA repair enzyme poly(ADP-ribose)polymerase (PARP). Anticancer Drug Des. 1995;10:507-14.
17.Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med. 2008;359:1367-80.
18.Dempke WC, Suto T, Reck M. Targeted therapies for non-small cell lung cancer. Lung Cancer. 2010;67:257-74.
19.Chang A. Chemotherapy, chemoresistance and the changing treatment landscape for NSCLC. Lung Cancer. 2011;71:3-10.
20.Proceedings from the Ninth Annual Targeted Therapies in Lung Cancer Symposium. J Thorac Oncol. 2009;4:S1045-89.
21.Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145-7.
22.Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol. 2000;18:399-404.
23.Ding S, Schultz PG. A role for chemistry in stem cell biology. Nat Biotechnol. 2004;22:833-40.
24.Xu Y, Shi Y, Ding S. A chemical approach to stem-cell biology and regenerative medicine. Nature. 2008;453:338-44.
25.Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, et al. Disease-specific induced pluripotent stem cells. Cell. 2008;134:877-86.
26.Jackson L, Jones DR, Scotting P, Sottile V. Adult mesenchymal stem cells: differentiation potential and therapeutic applications. J Postgrad Med. 2007;53:121-7.
27.Pacher P, Szabo C. Role of poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular diseases: the therapeutic potential of PARP inhibitors. Cardiovasc Drug Rev. 2007;25:235-60.
28.Nishiyama N, Miyoshi S, Hida N, Uyama T, Okamoto K, Ikegami Y, et al. The significant cardiomyogenic potential of human umbilical cord blood-derived mesenchymal stem cells in vitro. Stem Cells. 2007;25:2017-24.
29.Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, et al. Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell. 2009;136:964-77.
30.Ebert AD, Yu J, Rose FF, Jr., Mattis VB, Lorson CL, Thomson JA, et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature. 2009;457:277-80.
31.Schwarz SC, Schwarz J. Translation of stem cell therapy for neurological diseases. Transl Res. 2010;156:155-60.
32.Voltarelli JC, Couri CE, Stracieri AB, Oliveira MC, Moraes DA, Pieroni F, et al. Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA. 2007;297:1568-76.
33.Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science. 2007;318:1920-3.
34.Loh YH, Agarwal S, Park IH, Urbach A, Huo H, Heffner GC, et al. Generation of induced pluripotent stem cells from human blood. Blood. 2009;113:5476-9.
35.Hanna JH, Saha K, Jaenisch R. Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell. 2010;143:508-25.
36.Alberio R, Campbell KH, Johnson AD. Reprogramming somatic cells into stem cells. Reproduction. 2006;132:709-20
37.Takahashi K, Yamanaka S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell. 2006;126:663-76.
38.Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell. 2007;131:861-72.
39.Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917-20.
40.Xu C. Characterization and evaluation of human embryonic stem cells. Methods Enzymol. 2006;420:18-37.
41.Hoffman LM, Carpenter MK. Characterization and culture of human embryonic stem cells. Nat Biotechnol. 2005;23:699-708.
42.De Carvalho DD, You JS, Jones PA. DNA methylation and cellular reprogramming. Trends Cell Biol. 2010;20:609-17.
43.Meissner A. Epigenetic modifications in pluripotent and differentiated cells. Nat Biotechnol. 2010;28:1079-88.
44.Zhu JK. Active DNA demethylation mediated by DNA glycosylases. Annu Rev Genet. 2009;43:143-66.
45.Popp C, Dean W, Feng S, Cokus SJ, Andrews S, Pellegrini M, et al. Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature. 2010;463:1101-5.
46.Delker RK, Fugmann SD, Papavasiliou FN. A coming-of-age story: activation-induced cytidine deaminase turns 10. Nat Immunol. 2009;10:1147-53.
47.Hajkova P, Jeffries SJ, Lee C, Miller N, Jackson SP, Surani MA. Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. Science. 2010;329:78-82.
48.Oda Y, Yoshimura Y, Ohnishi H, Tadokoro M, Katsube Y, Sasao M, et al. Induction of pluripotent stem cells from human third molar mesenchymal stromal cells. J Biol Chem. 2010;285:29270-8.
49.Cho YW, Hong T, Hong S, Guo H, Yu H, Kim D, et al. PTIP associates with MLL3- and MLL4-containing histone H3 lysine 4 methyltransferase complex. J Biol Chem. 2007;282:20395-406.
50.Patel SR, Kim D, Levitan I, Dressler GR. The BRCT-domain containing protein PTIP links PAX2 to a histone H3, lysine 4 methyltransferase complex. Dev Cell. 2007;13:580-92.
51.van Attikum H, Gasser SM. Crosstalk between histone modifications during the DNA damage response. Trends Cell Biol. 2009;19:207-17.
52.Jordan CT, Guzman ML, Noble M. Cancer stem cells. N Engl J Med. 2006;355:1253-61.
53.Deng W. PARylation: strengthening the connection between cancer and pluripotency. Cell Stem Cell. 2009;5:349-50.
54.Gao F, Kwon SW, Zhao Y, Jin Y. PARP1 poly(ADP-ribosyl)ates Sox2 to control Sox2 protein levels and FGF4 expression during embryonic stem cell differentiation. J Biol Chem. 2009;284:22263-73.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文